Русская Википедия:Эффект Унру

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Эффект Унру, или излучение Унру, — предсказываемый квантовой теорией поля эффект наблюдения теплового излучения в ускоряющейся системе отсчёта при отсутствии этого излучения в инерциальной системе отсчёта. Другими словами, ускоряющийся наблюдатель увидит фон излучения вокруг себя, даже если не ускоряющийся наблюдатель не видит ничего. Основное квантовое состояние (физический вакуум) в инерциальной системе кажется состоянием с ненулевой температурой в ускоряющейся системе отсчёта.

Эффект был предсказан теоретически в 1976 году Уильямом Унру из Университета Британской Колумбии.

Унру показал, что понятие о вакууме зависит от того, как наблюдатель движется сквозь пространство-время. Если вокруг неподвижного наблюдателя находится только вакуум, то ускоряющийся наблюдатель увидит вокруг себя много частиц, находящихся в термодинамическом равновесии, то есть тёплый газ. Эффект Унру контринтуитивен, он требует изменения понимания понятия вакуума, позволяя говорить о вакууме только относительно какого-то объекта.

Экспериментальное подтверждение и само существование эффекта Унру спорно: в научной литературе продолжается дискуссия на этот счёт. Многие исследователи полагают, что эффект Унру не подтверждён экспериментально, но, вероятно, такой эксперимент возможен[1]. Другие считают, что в стандартной постановке задачи эффект в принципе не является наблюдаемым[2] либо сама постановка задачи содержит ошибочные предпосылки[3].

Объяснение

По современным определениям, понятие вакуум — не то же самое, что и пустое пространство, так как всё пространство заполнено квантованными полями (иногда говорят о виртуальных частицах). Вакуум — это самое простое, низшее по энергии из возможных состояний. Энергетические уровни любого квантованного поля зависят от гамильтониана, который, в свою очередь, в общем случае зависит от координат, импульсов и времени. Поэтому гамильтониан, а значит и понятие вакуума, зависит от системы отсчёта. В пространстве Минковского из-за его высокой симметрии для всех инерциальных систем отсчёта вакуум — одно и то же состояние. Но это перестаёт быть верным уже для неинерциальных систем в пространстве Минковского, а тем более для практически произвольно искривлённых пространств общей теории относительности.

Как известно, количество частиц является собственным значением оператора, зависящего от операторов рождения и уничтожения. Перед тем, как определить операторы рождения и уничтожения, нам нужно разложить свободное поле на положительные и отрицательные частотные компоненты. А это можно сделать только в пространствах с времениподобным вектором Киллинга (хотя бы асимптотическим). Разложение будет разным в галилеевых и риндлеровских координатах, несмотря на то что операторы рождения и уничтожения в них связаны преобразованием Боголюбова. Именно поэтому количество частиц зависит от системы отсчёта.

Эффект Унру и общая теория относительности

Эффект Унру позволяет дать грубое объяснение излучения Хокинга, но не может считаться полным его аналогом[4]. При равноускоренном движении позади ускоряющегося тела тоже возникает горизонт событий, но разница в граничных условиях задач даёт различные решения для этих эффектов. В частности, подход, основанный на расчёте ограниченных интегралов по путям, даёт следующую картину для эффекта Унру: «тепловая атмосфера» ускоренного наблюдателя состоит из виртуальных частиц, но если такая виртуальная частица поглощается ускоренным наблюдателем, то соответствующая античастица становится реальной и доступна для детектирования инерциальным наблюдателем[4]. В этом случае ускоренный наблюдатель теряет часть своей энергии. В случае эффекта Хокинга для чёрной дыры, сформировавшейся в результате гравитационного коллапса, картина другая: появляющиеся в результате эффекта частицы «тепловой атмосферы» являются реальными. Эти частицы, уходящие на бесконечность, могут наблюдаться и поглощаться удалённым наблюдателем, однако независимо от их поглощения эти частицы уносят массу (энергию) чёрной дыры[4].

Численное значение

Температура наблюдаемого излучения Унру выражается той же формулой, что и температура излучения Хокинга, но зависит не от поверхностной гравитации, а от ускорения системы отсчёта Шаблон:Math.

<math>T = \frac{\hbar a}{2\pi k c} \approx 4{,}055\cdot 10^{-21}\; \mathrm{K} \cdot \frac{a}{1\; \mathrm{m/s^2}}.</math>

Так, температура вакуума в системе отсчёта частицы, двигающейся со стандартным земным ускорением свободного падения 9,81 м/с², равна 4×10−20 К. Для экспериментальной проверки эффекта Унру планируется достичь ускорения частиц 1026 м/с², что соответствует температурам около 400 000 K. Есть предложения, как с помощью фазы Берри можно экспериментально проверить эффект на гораздо меньших ускорениях, до 1017 м/с²[5].

При помощи кольцевых ускорителей электронов можно экспериментально проследить влияние ускорения электронов на их движение в направлении, перпендикулярном ускорению и таким образом экспериментально обнаружить эффект Унру[6][7].

Эффект Унру также влечёт за собой изменение скорости распада ускоренных частиц по отношению к частицам, движущимся по инерции[6][7]. Некоторые стабильные частицы (такие, как протон) приобретают конечное время распада[8]. В частности, протон может распасться по каналу Шаблон:Math, запрещённому законом сохранения энергии для покоящегося или равномерно движущегося протона[9][10]. При достижимых на Земле ускорениях этот эффект чрезвычайно слаб (для протона в LHC с ускорением 1021 м/с2 время жизни <math>\sim 10^{3\times 10^8}</math> лет[9]), однако в некоторых астрофизических условиях это время может значительно уменьшиться. Например, ускорение протона с энергией 1,6×105 ГэВ, попавшего в магнитное поле пульсара с Шаблон:Math = 1014 Гс, составляет 5×1031 м/с2, а «лабораторное» время жизни уменьшается до ~0,1 секунды[9].

В 2020 году сформировано предложение об экспериментальной проверке эффекта[11] в конденсате Бозе — Эйнштейна.

Примечания

Шаблон:Примечания

  1. Шаблон:Публикация
  2. Шаблон:Публикация
  3. Шаблон:Cite web
  4. 4,0 4,1 4,2 Шаблон:Статья
  5. Шаблон:Статья.
  6. 6,0 6,1 Гинзбург В. Л., Фролов В. П. Вакуум в однородном гравитационном поле и возбуждение равномерно ускоренного детектора // Эйнштейновский сборник 1986—1990. — М., Наука, 1990. — Тираж 2600 экз. — c. 190—278
  7. 7,0 7,1 Гинзбург В. Л., Фролов В. П. Вакуум в однородном гравитационном поле и возбуждение равномерно ускоренного детектора // УФН, 1987, т. 153, с. 633—674
  8. Шаблон:Статья.
  9. 9,0 9,1 9,2 Шаблон:Статья
  10. Шаблон:Статья
  11. Шаблон:Cite web