Русская Википедия:ARV-A-L

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Танк ARV-A-L или ARV-L (Шаблон:IPAc-en, произносится «Эй-Ар-Ви[-Эй]-Эл»; аббр. от англ. Armed Robotic Vehicle Assault Light — «вооружённая роботизированная машина штурмовая лёгкая», по классификации Армии СШАXM1219, также использовался вариант названия MULE-ARV — по наименованию платформы[1]) — полноприводная роботизированная боевая разведывательная машина повышенной проходимости на платформе MULE, предназначавшаяся для обеспечения огневой поддержки мотопехотных подразделений и ведения тактической разведки в интересах общевойсковых батальонов бригадных тактических групп нового типа (БТГр) Сухопутных войск США. После свёртывания государственной программы перевооружения Future Combat Systems 23 июня 2009 г., проект ARV-A-L какое-то время дорабатывался в рамках программы Early Infantry Brigade Combat Team, которая, в свою очередь, была свёрнута Министерством обороны США 3 февраля 2011 г.,[2] а окончательный отказ от проекта ARV-A-L был обнародован 2 августа 2011 г. в соответствии с приказом командующего Армией США от 29 июля 2011 г.

Производственный план

Согласно подписанному 6 апреля 2009 г. производственному плану выпуска роботизированных и беспилотных систем военного назначения, научно-исследовательские и опытно-конструкторские работы по проекту ARV-A-L должны были продолжаться в период 2009–2017 гг. Серийное производство ARV-A-L предполагалось начать в 2014 г. и продолжать до 2032 г. Постановка на вооружение первых боевых машин была запланирована на 2015 г., на вооружении ARV-A-L должна была находиться, по меньшей мере, до 2034 г. Согласно предварительному заказу предполагалось изготовить 702 машины[3].

Техническое описание

Управление машиной и наведение бортовых вооружений на цель осуществлялось дистанционно оператором посредством компактного универсального пульта управления (англ. Common Controller, разрабатывавшегося в рамках смежной программы опытно-конструкторских работ), оснащённого дисплеем с пользовательским интерфейсом, на котором отображалась боевая обстановка, — панорама местности, попавшая в сектор обзора видеокамеры наблюдения, — передаваемая в виде цветного изображения по беспроводному радиоканалу с видеокамеры, а также других цифровых записывающих устройств и датчиков бортовой аппаратуры. Помимо ARV-A-L универсальный пульт управления одинаково подходил для управления другими беспилотными роботизированными средствами БТГр, что и определяло его универсальность[4].

Бортовое оборудование

Помимо универсального оборудования, общего для машин на платформе MULE, ARV-A-L оснащалась следующим оборудованием:[3]

  • Выдвижная перископическая труба для обзора местности и размещения датчиков;
  • Электронно-оптическая и инфракрасная станция наземной разведки средней дальности действия (Medium Range EO/IR);
  • Аппаратура разведки, наблюдения и наведения на цели (RSTA);
  • Аппаратура РХБ-распознавания воздуха и оповещения (ACADA);
  • Система распознавания и идентификации целей «свой—чужой» (Target Recognition System);
  • Система управления огнём (Fire Control System);
  • Постановщик дымовых помех M6 (Countermeasure Discharger);
  • Набор разграждения (Obstacle Breaching Kit);
  • Другое контрольно-измерительное оборудование.

Вооружение

  • FGM-148 Javelin P3I (перспективный, разработка отменена): эффективная дальность стрельбы — 4000 м, вес возимого боекомплекта — 64 кг;
  • CKEM (перспективный, разработка отменена): эффективная дальность стрельбы — 5000 м (по бронеобъектам), вес возимого боекомплекта — 180 кг.

Роботехника

Сама по себе ARV-A-L выступала как носитель (матка) для других малогабаритных роботизированных средств: беспилотных летательных аппаратов разведки и целеуказания, а также миниатюрных инженерных роботов на гусеничной базе:

  • БПЛА разведки и целеуказания Allied Aerospace/MicroCraft iSTAR OAV вертикального взлёта и посадки для ведения воздушной разведки в интересах взвода, определения оптимального маршрута движения пехоты и приданных средств, дальность полёта — до 2000 м, максимальная взлётная масса — 38,5 кг;
  • Многоцелевой робот iRobot 310 SUGV (XM1216) для ведения разведки в зданиях, сооружениях и труднодоступных местах, обзора боевой обстановки, обнаружения и наведения на цели управляемых вооружений, обследования зданий, сооружений, помещений и прилегающей территории на предмет наличия инженерных заграждений и взрывоопасных предметов, с последующим разминированием/нейтрализацией обнаруженных предметов, вызывающих подозрение, дальность действия — до 1000 м, вес (без дополнительного оборудования) — 13,2 кг;
  • других малогабаритных и миниатюрных роботизированных средств поддержки пехоты.

Войсковые испытания

Шаблон:Внешние медиафайлы Задействование ARV-A-L, наряду с другими роботизированными машинами на платформе MULE, было предусмотрено планом командно-штабных учений Caspian Guard, запланированных к проведению Европейским командованием вооружённых сил США в Республике Азербайджан в 2015 г., где, согласно легенде учений, американским войскам предстояло противостоять наступательным действиям подразделений мотострелковой бригады противника в Прикаспийском регионе (в условиях малонаселённой или незаселённой горно-пустынной местности, а также в условиях городской застройки), по условиям учений от них требовалось обеспечить безопасность четырёх авиабаз, отразить и уничтожить противника. По сценарию учений, действия разворачивались преимущественно в столице страны — Баку, занятой неприятельскими силами, и прилегающих к ней районах. Перед мотопехотными подразделениями воинского контингента США, оснащёнными ARV-A-L, были поставлены следующие задачи:

  • Выдвинуться к месту проведения операции в светлое время суток из пункта дислокации, расположенного на территории Азербайджана или сопредельного дружественного государства, по прибытии подготовить привлечённые силы и средства к действиям в тёмное время суток;
  • Осуществить переброску боевых разведывательных машин по воздуху в район оперативного предназначения, на внешней подвеске многоцелевых вертолётов UH-60 и на борту тяжёлых транспортных вертолётов CH-47;
  • Реализовать развединформацию, полученную со средств наземной и воздушной тактической и оперативной разведки;
  • Осуществить зачистку местности вдоль намеченного маршрута движения основных сил американской сухопутной группировки;
  • Во взаимодействии с армейской авиацией соединения и ударными вертолётами RAH-66 занять стратегически важную переправу — мост Табур — и командные высоты восточнее него;
  • Подавить огневые точки, укреплённые узлы обороны и отдельные очаги сопротивления противника в заданном районе;
  • Применяя средства активной маскировки поставить газодымовые завесы и проникнуть вглубь боевых порядков противника, преодолев внешний периметр его системы огня, обеспечив безопасное продвижение пехоты;
  • Выбить противника из занимаемых им населённых пунктов и отдельных районов в них;
  • Уничтожить все силы противника в заданном районе (в Баку и прилегающих районах).

Проведению испытаний помешало прекращение финансирования программы заказчиком и сложная военно-политическая ситуация в регионе.

Сравнительная характеристика

Шаблон:Сравнительная характеристика машин MULE/ARV

См. также

Примечания

Шаблон:Примечания

Шаблон:США БТТ Шаблон:Future Combat Systems

  1. Future Combat Systems (FCS) Overview Шаблон:En icon Шаблон:Wayback. — Washington, D.C.: Director, Operational Test & Evaluation, 2006. — P.57 — 60 p.
  2. Connors, Shaun C. ; Foss, Christopher F. Jane’s Military Vehicles and Logistics 2011–2012 Шаблон:En icon. — 32nd Rev. ed. — L.: Jane’s Information Group, 2011. — 1035 p. — ISBN 978-0-7106-2952-4.
  3. 3,0 3,1 Шаблон:Wayback Office of the Secretary of Defense Unmanned Systems Roadmap (2009–2034) Шаблон:En icon Шаблон:Webarchive. — Washington, D.C.: Office of the Secretary of Defense, 2009. — P.22,127 — 195 p.
  4. Шаблон:Cite video Шаблон:Cite web