Русская Википедия:C-группа

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

C-группа — это группа, в которой централизатор любой свёртки имеет нормальную силовскую 2-подгруппу. Этот класс включает в качестве специальных случаев CIT-группы, в которых централизатор любой свёртки является 2-группой, и TI-группы, в которых любые силовские 2-подгруппы имеют тривиальное пересечение.

Простые C-группы определил СузукиШаблон:Sfn, а его классификацию подытожил Горенштейн Шаблон:Sfn. Классификация C-групп использовалась в Томпсоновской классификации N-групп. Простыми C-группами являются

  • проективные специальные линейные группы PSL2(p), где p является простым числом Ферма или Мерсенна
  • проективные специальные линейные группы PSL2(9)
  • проективные специальные линейные группы PSL2(2n) для <math>n \geqslant 2</math>
  • проективные специальные линейные группы PSL3(q), где q является степенью простого числа
  • Группы Сузуки Sz(22n+1) для <math>n \geqslant 1</math>
  • проективные унитарные группы PU3(q), где q является степенью простого числа

CIT-группы

C-группы включают в качестве специальных случаев CIT-группы, в которых централизатор любой свёртки является 2-группой. Эти группы классифицировал СузукиШаблон:SfnШаблон:Sfn и простые группы этого класса являются C-группами, отличными от PU3(q) и PSL3(q). Группы, силовские 2-подгруппы которых являются элементарными абелевыми, были классифицированы в статье БёрнсайдаШаблон:Sfn, которая была на многие годы забыта, пока её не обнаружил в 1970 году Фейт.

TI-группы

C-группы включают в качестве специальных случаев TI-группы (группы тривиальных пересечений), которые являются группами, в которых любые две силовские 2-подгруппы имеют тривиальное пересечение. Группы классифицировал СузукиШаблон:Sfn, а простые группы этого класса являются группами PSL2(q), PU3(q), Sz(q) для q, равного степени 2.

Примечания

Шаблон:Примечания

Литература

Шаблон:Refbegin

Шаблон:Refend Шаблон:Rq