Русская Википедия:CA-группа
Говорят, что группа является ЦА-группой, CA-группой или централизаторной абелевой группой, если централизатор любого нетождественного элемента является абелевой подгруппой. Конечные ЦА-группы имеют историческое значение как ранний пример типов классификаций, которые потом использовались в теореме Томпсона–Фейта и классификации простых конечных групп. Некоторые важные бесконечные группы являются ЦА-группами, такие как свободные группы, монстры Тарского и некоторые из групп Бёрнсайда, а локально конечные ЦА-группы были классифицированы точно. ЦА-группы также называются коммутативно-транзитивными группами (или КТ-группами для краткости), поскольку коммутативность является транзитивным отношением для нетождественных элементов группы тогда и только тогда, когда группа является ЦА-группой.
История
Локально конечные ЦА-группы были классифицированы некоторыми математиками с 1925 по 1998. Первые конечные ЦА-группы, для которых было показано, что они простые или разрешимые, появились в статье ВайснераШаблон:Sfn. Затем в Шаблон:Не переведено 5Шаблон:Sfn было показано, что конечные ЦА-группы чётного порядка являются группами Фробениуса, абелевыми группами или двумерными проективными специальными линейными группами над конечным полем нечётного порядка, PSL(2, 2f) для <math>f \geqslant 2</math>. Наконец, в статье СудзукиШаблон:Sfn было показано, что конечные ЦА-группы нечётного порядка являются группами Фробениуса или абелевыми группами, а потому не являются неабелевыми простыми.
ЦА-группы были важны в контексте классификации простых конечных групп. Шаблон:Не переведено 5 показал, что любая конечная простая неаблева ЦА-группа имеет чётный порядок. Этот результат был сначала расширен до теоремы Фейта — Холла — Томпсона, показывающей, что конечные простые неабелевы Шаблон:Не переведено 5 имеют чётный порядок, а затем до теоремы Томпсона — Фейта, которая утверждает, что любая конечная простая неабелева группа имеет чётный порядок. Описание классификации конечных ЦА-групп дано как примеры 1 и 2 в книге СудзукиШаблон:Sfn. Более детальное описание групп Фробениуса включено в статью ВуШаблон:Sfn, где показано, что конечная разрешимая ЦА-группа является полупрямым произведением абелевой группы и без фиксированной точки автоморфизмом, и обратно, любое такое полупрямое произведение является конечной разрешимой ЦА-группой. Ву расширил также классификацию Судзуки и других на локально конечные группы.
Примеры
Любая абелева группа является ЦА-группой и группа с нетривиальным центром является ЦА-группой тогда и только тогда, когда она абелева. Конечные ЦА-группы классифицированы — разрешимые группы являются полупрямыми произведениями абелевых групп на циклические группы, такие, что любой нетривиальный элемент действует без фиксированной точки, и включают группы, такие как диэдральные группы порядка 4k+2, и знакопеременную группу на 4 точках порядка 12, в то время как неразрешимые группы все являются простыми и 2-мерными проективными специальными линейными группами PSL(2, 2n) для <math>n \geqslant 2</math>. Бесконечные ЦА-группы включают свободные группы, PSL(2, R) и группы Бёрнсайда большой простой экспонентыШаблон:Sfn. Некоторые более современные результаты в бесконечном случае содержатся в статье ВуШаблон:Sfn, включая классификацию локально конечных ЦА-групп. Ву также заметил, что монстры Тарского являются очевидными примерами бесконечных простых ЦА-групп.
Примечания
Литература