Русская Википедия:CD38

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Infobox gene CD38 (кластер дифференцировки 38), представляет собой гликопротеин массой ∼45 кДа, который кодируется геном CD38, расположенным на хромосоме 4p15[1][2]. CD38 обнаружен на поверхности многих иммунных клеток (лейкоцитов)[3]. Являясь многофункциональным ферментом гидролазой (гликогидролаза (ЕС 3.2.2.6)), он катализирует деградацию НАД или же НАДФ с образованием циклической АДФ-рибозы и никотинамида[4]. Продукты этой реакции необходимы для регулирования внутриклеточного пула Ca2+, самой древней и универсальной системы сигнализации клеток[5]. Поэтому он участвует также в таких процессах как сокращение гладких мышц[6], гибель клеток и апоптоз[7], нейронная и гормональная сигнализация, оплодотворение яиц и ряде других процессов[8].

Участвуя в этой реакции CD38 осуществляет регуляцию внутриклеточного пула НАД[9][10]. В процессе старения организма уровень белка CD38 увеличивается, что приводит к снижению пула НАД и ослаблению синтеза АТФ митохондриями[11]. Флавоноиды такие как апигенин ингибируя CD38, повышают уровни внутриклеточного НАД и, таким образом активируют сигнальные пути, связанные с НАД-зависимыми белками - сиртуинами[12][13]. Влияя на пул НАД, CD38 участвует в регуляции метаболизма и в патогенезе множества состояний, включая старение, ожирение, диабет, сердечные заболевания, астму и воспаление[14].

Помимо вышеперечисленных функций CD38 участвует в развитии областей мозга, важных для социального поведения[15]. Он необходим для регуляции секреции окситоцина[16]

Ингибиторы CD38

Поскольку CD38 играет центральную роль в снижении пула НАД, искусственное поддержание высокого уровня НАД за счет ингибирования CD38 может оказывать положительное влияние на метаболические заболевания и процессы старения организма[17]. Способностью ингибировать CD38 обладают такие вещества как:

Файл:MK-0159 ингибитор фермента CD38.jpg
MK-0159 ингибитор фермента CD38. Мыши, получавшие MK-0159, были хорошо защищены от повреждения миокарда при ишемии/реперфузии сердца по сравнению с мышами, получавшими предшественники НАД+ (никотинамидрибозид) или такой мощный ингибитор CD38 как 78c.[29]

Примечания

Шаблон:Примечания

Литература

  • Glaría, E., & Valledor, A. F. (2020). Roles of CD38 in the Immune Response to Infection. Cells, 9(1), 228. https://doi.org/10.3390/cells9010228
  • Guerreiro, S., Privat, A. L., Bressac, L., & Toulorge, D. (2020). CD38 in Neurodegeneration and Neuroinflammation. Cells, 9(2), 471. {{doi: 10.3390/cells9020471}} Шаблон:PMC
  • Chini, C., Hogan, K. A., Warner, G. M., Tarragó, M. G., Peclat, T. R., Tchkonia, T., ... & Chini, E. (2019). The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age-related cellular NAD+ decline. Biochemical and biophysical research communications, 513(2), 486-493. Шаблон:Doi Шаблон:PMC

Ссылки

CD38

Шаблон:Кластеры дифференцировки

  1. Nakagawara, K., Mori, M., Takasawa, S., Nata, K., Takamura, T., Berlova, A., ... & Okamoto, H. (1995). Assignment of CD38, the gene encoding human leukocyte antigen CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase), to chromosome 4p15. Cytogenetic and Genome Research, 69(1-2), 38-39.
  2. Nata K, Takamura T, Karasawa T, Kumagai T, Hashioka W, Tohgo A, Yonekura H, Takasawa S, Nakamura S, Okamoto H (1997). Human gene encoding CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase): organization, nucleotide sequence and alternative splicing. Gene. 186 (2): 285–292. Шаблон:Doi Шаблон:PMID
  3. Mehta K, Shahid U, Malavasi F. (1996). Human CD38, a cell-surface protein with multiple functions. FASEB J. 10(12):1408–1417
  4. Summerhill RJ, Jackson DG, Galione A. (1993). Human lymphocyte antigen CD38 catalyzes the production of cyclic ADP-ribose. FEBS Lett. 335(2):231–233.
  5. De Flora, A., Zocchi, E., Guida, L., Franco, L., & Bruzzone, S. (2004). Autocrine and Paracrine Calcium Signaling by the CD38/NAD+/Cyclic ADP‐Ribose System. Annals of the New York Academy of Sciences, 1028(1), 176-191. https://doi.org/10.1196/annals.1322.021
  6. Deshpande, D. A., White, T. A., Dogan, S., Walseth, T. F., Panettieri, R. A., & Kannan, M. S. (2005). CD38/cyclic ADP-ribose signaling: role in the regulation of calcium homeostasis in airway smooth muscle. American Journal of Physiology-Lung Cellular and Molecular Physiology, 288(5), L773-L788. https://doi.org/10.1152/ajplung.00217.2004
  7. La Rovere, R. M., Roest, G., Bultynck, G., & Parys, J. B. (2016). Intracellular Ca2+ signaling and Ca2+ microdomains in the control of cell survival, apoptosis and autophagy. Cell calcium, 60(2), 74-87. Шаблон:DOI
  8. Rah, S. Y., Mushtaq, M., Nam, T. S., Kim, S. H., & Kim, U. H. (2010). Generation of cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate by CD38 for Ca2+ signaling in interleukin-8-treated lymphokine-activated killer cells. Journal of Biological Chemistry, 285(28), 21877-21887. Шаблон:Doi
  9. Aksoy, P., White, T. A., Thompson, M., & Chini, E. N. (2006). Regulation of intracellular levels of NAD: a novel role for CD38. Biochemical and biophysical research communications, 345(4), 1386-1392
  10. Chini EN. (2009). CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions. Curr Pharm Des. 15(1): 57–63 Шаблон:PMC
  11. Camacho-Pereira, J., Tarragó, M. G., Chini, C. C., Nin, V., Escande, C., Warner, G. M., ... & Chini, E. N. (2016). CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell metabolism, 23(6), 1127-1139. Шаблон:Doi Шаблон:PMC
  12. Ruan, Q., Ruan, J., Zhang, W., Qian, F., & Yu, Z. (2017). Targeting NAD+ degradation: The therapeutic potential of flavonoids for Alzheimer's disease and cognitive frailty. Pharmacological research. https://doi.org/10.1016/j.phrs.2017.08.010
  13. Escande, C., Nin, V., Price, N. L., Capellini, V., Gomes, A. P., Barbosa, M. T., ... & Chini, E. N. (2013). Flavonoid Apigenin Is an Inhibitor of the NAD+ ase CD38. Diabetes, 62(4), 1084-1093. https://doi.org/10.2337/db12-1139
  14. Chini, E. N., Chini, C. C., Netto, J. M. E., de Oliveira, G. C., & van Schooten, W. (2018). The Pharmacology of CD38/NADase: An Emerging Target in Cancer and Diseases of Aging. Trends in pharmacological sciences. 39(4), 424-436 Шаблон:Doi
  15. Nelissen, T. P., Bamford, R. A., Tochitani, S., Akkus, K., Kudzinskas, A., Yokoi, K., ... & Oguro-Ando, A. (2018). CD38 is required for dendritic organisation in visual cortex and hippocampus. Neuroscience. https://doi.org/10.1016/j.neuroscience.2017.12.050
  16. Jin, D., Liu, H. X., Hirai, H., Torashima, T., Nagai, T., Lopatina, O., ... & Fujita, K. (2007). CD38 is critical for social behaviour by regulating oxytocin secretion. Nature, 446(7131), 41 Шаблон:Doi
  17. Tarragó, M. G., Chini, C. C., Kanamori, K. S., Warner, G. M., Caride, A., de Oliveira, G. C., ... & Chini, E. N. (2018). A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD+ decline. Cell metabolism, 27(5), 1081-1095. Шаблон:PMID Шаблон:PMC Шаблон:DOI
  18. Шаблон:Cite journal
  19. Peclat, T. R., Thompson, K. L., Warner, G. M., Chini, C. C., Tarragó, M. G., Mazdeh, D. Z., ... & Chini, E. N. (2022). CD38 inhibitor 78c increases mice lifespan and healthspan in a model of chronological aging. Aging Cell, e13589. Шаблон:PMID Шаблон:Doi
  20. Шаблон:Cite journal
  21. Шаблон:Cite journal
  22. Шаблон:Cite journal
  23. Шаблон:Cite journal
  24. Шаблон:Cite journal
  25. Шаблон:Cite web
  26. Mayer, K. A., Budde, K., Halloran, P. F., Doberer, K., Rostaing, L., Eskandary, F., ... & Böhmig, G. A. (2022). Safety, tolerability, and efficacy of monoclonal CD38 antibody felzartamab in late antibody-mediated renal allograft rejection: study protocol for a phase 2 trial. Trials, 23(1), 1-15. Шаблон:PMID Шаблон:PMC Шаблон:DOI
  27. Escande, C., Nin, V., Price, N. L., Capellini, V., Gomes, A. P., Barbosa, M. T., … & Chini, E. N. (2013). Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes, 62(4), 1084—1093. Шаблон:PMID Шаблон:PMC Шаблон:DOI
  28. Boslett, James; Hemann, Craig; Zhao, Yong Juan; Lee, Hon-Cheung; Zweier, Jay L. (2017). "Luteolinidin protects the postischemic heart through CD38 inhibition with preservation of NAD(P)(H)". The Journal of Pharmacology and Experimental Therapeutics. 361(1): 99–108. Шаблон:Doi Шаблон:PMC Шаблон:PMID
  29. 29,0 29,1 Lagu, B., Wu, X., Kulkarni, S., Paul, R., Becherer, J. D., Olson, L., ... & Andrzejewski, S. (2022). Orally Bioavailable Enzymatic Inhibitor of CD38, MK-0159, Protects against Ischemia/Reperfusion Injury in the Murine Heart. Journal of medicinal chemistry, 65(13), 9418-9446. Шаблон:PMID Шаблон:DOI
  30. Chen, P. M., Katsuyama, E., Satyam, A., Li, H., Rubio, J., Jung, S., ... & Tsokos, G. C. (2022). CD38 reduces mitochondrial fitness and cytotoxic T cell response against viral infection in lupus patients by suppressing mitophagy. Science Advances, 8(24), eabo4271. Шаблон:PMID Шаблон:PMC Шаблон:DOI
  31. Ugamraj, H. S., Dang, K., Ouisse, L. H., Buelow, B., Chini, E. N., Castello, G., ... & Dalvi, P. (2022, December). TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-enzyme activity. mAbs, 14(1), 2095949. Taylor & Francis. Шаблон:PMID Шаблон:PMC Шаблон:DOI