Русская Википедия:CREBBP

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:ЛокусШаблон:GNF Protein box CREB-свя́зывающий бело́к (Шаблон:Lang-en) — белок, который у человека кодируется геном CREBBP, локализованным на 16-й хромосоме[1][2]. CBP (как и его близкий гомолог, Шаблон:Нп5) функционирует как транскрипционный коактиватор, то есть посредством белок-белковых взаимодействий связывает различные белковые трансактиваторы транскрипции с основным транскрипционным комплексом[3]. Впервые описан исследователями в 1993 году[1].

Ген

Ген CREBBP у человека располагается на 16-ой хромосоме и занимает локус 16p13.3. Ген содержит 34 экзона и экспрессируется повсеместно[4], в том числе и на эмбриональном этапе развития. Ген расположен на минус-цепи[5]. Длина гена составляет около 190 килобаз, транскрипция идёт от центромеры до теломеры. Длина мРНК составляет 8,7 кб, из которых на Шаблон:Нп5 приходится 7,3 кб[6].

Гомологи CREBBP имеются у многих многоклеточных организмов, в том числе мух, червей и растений, однако отсутствуют у низших эукариот, например, дрожжей[7]. У данио-рерио паттерны экспрессии CREBBP и его метилирования играют роль в ходе развития организма[8]. У ящерицы североамериканского красногорлого анолиса экспрессия CBP различается у двух полов[9].

Структура

CREBBP представляет собой белок с молекулярной массой 265 кДа[10], состоящий из 2442 аминокислот. Локализуется в ядре[6]. По строению он очень схож с гомологичным[6] белком p300, вместе с которым CBP составляет Шаблон:Нп5[7].

Большая часть функциональных доменов этих двух белков высоко консервативна. В числе этих доменов 4 известных трансактивационных домена (TAD):

Кроме того, и p300, и CBP также содержат домен с гистонацетилтрансферазной активностью (НАТ), который ацетилирует гистоны и другие белки. Рядом с ним находится бромодомен, который связывается с ацетилированными остатками лизина и может привлекать СВР к специфическим сайтам на хромосомах. Рядом с каталитическим участком располагается ещё один цистеин/гистидин-обогащённый участок (CH2), включающий бромодомен и Шаблон:Нп5, который связывается с коферментом А. Наличие этого мотива уникально для CBP, он отсутствует у других белков с гистонацетилтрансферазной активностью[7][11][12].

Файл:Structure CREBBP.svg
Принципиальная схема структуры СВР/р300 с указанием доменов

Действие на клеточном уровне

Ген CREBBP экспрессируется повсеместно и участвует в транскрипционной коактивации многих факторов транскрипции. Белок CREBBP впервые был описан как ядерный белок, который связывается белком CREB. Этот ген, как теперь известно, играет важную роль в эмбриональном развитии, контроле роста и поддержании гомеостаза[13]. Было показано, что мыши, у которых нокаутирован ген CREBBP или EP300, кодирующий белок р300, погибают на ранних этапах развития[14][15]. Кроме того, мыши, у которых имелся только один функциональный аллель каждого из генов CREBBP и EP300 вместо двух, также погибали в ходе эмбриогенеза. По-видимому, для развития эмбриона критическое значение имеет общее суммарное содержание белков CBP и p300, которое в обоих случаях составляло половину от нормального[14]. В отличие от организма в целом, отдельные клетки могут развиваться в отсутствии белков CBP или р300. Например, у мышей В- и Т-клетки, лишённые или СВР, или р300, развивались нормально в условиях in vivo, а лишённые обоих белков одновременно погибали[16][17].

CBP, как и p300, повышает экспрессию генов-мишеней при помощи следующих основных механизмов:

Шаблон:External media CBP, как и p300, предпочитает ацетилировать N-концевые хвосты гистонов, а именно остатки К12 (лизин 12) и К15 гистона Шаблон:Нп5, K14 и K18 Шаблон:Нп5 и К5 и К8 Шаблон:Нп5. Однако СВР ацетилирует не только гистоны, но и негистоновые белки, такие как различные факторы и коактиваторы транскрипции. Эти модификации могут изменять белок-белковые взаимодействия, взаимодействия белков с ДНК, а также ядерную локализацию белков. Другие важные партнёры СВР и р300 — белки репликации и репарации ДНК, в частности, Шаблон:Нп5, Шаблон:Нп5, Шаблон:Нп5, Шаблон:Нп5. Кроме того, СВР и р300 могут взаимодействовать и с белками, не имеющими непосредственного отношения к хроматину, в частности, с Шаблон:Нп5 и циклин-зависимой киназой 2, тем самым участвуя в регуляции клеточного цикла. СВР и р300 участвуют в регуляции разрушения транскрипционного фактора p53. Было показано, что регион СН-1 СВР и р300 может проявлять полиубиктивинлигазную активность р53, тем самым непосредственно влияя на его деградацию. Наконец, СВР, как и р300, могут ацетилировать белки, связанные с Шаблон:Нп5, в частности, Шаблон:Нп5 и импортин-α7[7].

CBP используется в качестве Шаблон:Нп5 многими транскрипционными факторами, в числе которых Шаблон:Нп5, c-myb, Шаблон:Нп5, E2F1, Шаблон:Нп5, а также члены суперсемейства Шаблон:Нп5 (полный список белков, с которыми взаимодействует CBP, см. ниже)[19].

Результаты последних (по состоянию на 2009 год) исследований показали, что СВР-опосредованное посттрансляционное Шаблон:Нп5 изменяет конформацию белков, взаимодействующих с CBP, регулируя таким образом экспрессию генов, клеточный рост и дифференцировку[20].

Физиологические функции

CBP задействован в сигнальных путях G-белков и через них принимает участие в ответе клетки на связывание адреналина. Некоторые G-белки в активированном состоянии стимулируют аденилатциклазу, в результате чего уровень сАМР в клетке повышается. сАМР активирует протеинкиназу А (РКА), которая состоит из четырёх субъединиц: двух регуляторных и двух каталитических. Связывание сАМР с регуляторными субъединицами вызывает освобождение каталитических субъединиц, которые вследствие этого могут переместиться в ядро и взаимодействовать с транскрипционными факторами, таким образом влияя на экспрессию генов. Транскрипционный фактор CREB, связывающийся с последовательностью ДНК, называемой элементом отклика на сАМР (CRE), фосфорилируется РКА по остатку серина (Ser 133) в домене KID. Эта модификация стимулирует взаимодействие домена KID CREB с доменом KIX CBP или р300, в результате чего усиливается транскрипция генов, подконтрольных CREB, в том числе и тех, которые участвуют в глюконеогенезе. Этот сигнальный путь запускается при связывании адреналина с клеткой-мишенью[21].

Огромное количество экспериментальных данных свидетельствуют о ключевой роли ацетилирования гистонов в пластичности синапсов у млекопитающих (в том числе долговременной потенциации), памяти и поведенческой адаптации к окружающей среде. Первоначальные свидетельства связаны с наблюдением, касающимся больных синдромом Рубинштейна — Тейби: у них мутации, затрагивающие CBP, приводят к умственной отсталости. Кроме того, мыши, мутантные по CREBBP, имели нарушения долговременной памяти[22]. Дальнейшие эксперименты показали, что CBP важен не только для нейронной пластичности, но также выживания нейронов, связанного с их активностью[23], и нейрогенеза[24].

Нарушения со стороны иммунной системы, проявляющиеся у пациентов с синдромом Рубинштейна — Тейби, свидетельствуют о важной роли CBP в функционировании иммунной системы и воспалительных процессах. По-видимому, этот эффект обусловлен ненормально пониженной экспрессией таких важных для иммунитета белков, как CREB, NF-κB, c-jun, Шаблон:Нп5, Шаблон:Нп5 и c-Myc, обусловленной отсутствием активности СВР[25]. В самом деле, регулируя активность транскрипционных факторов NF-κB и Шаблон:Нп5, которые активируют гены, связанные с хроническим и острым воспалением, СВР может играть важную роль в контроле воспаления на уровне транскрипции[26]. Установлено, что СВР задействован в экспрессии белка CD59, который участвует в защите клеток организма от атак со стороны системы комплемента[27].

СВР играет важную роль в функционировании женской репродуктивной системы. На мышах было показано, что он необходим для экспрессии Шаблон:Нп5 и поддержании нормальной фертильности[28]. Кроме того, СВР необходим для экспрессии генов-мишеней лютеинизирующего гормона во время овуляции[29]. Он также участвует в клеточном ответе на связывание эстрогена[30].

CBP и p300 играют важную роль в функционировании фоторецепторов (палочек и колбочек): колбочко-палочковый гомеобоксовый белок (Шаблон:Lang-en) привлекает их к промоторам необходимых генов, где они ацетилируют гистоны и способствуют их экспрессии. Интересно, что нокаут одного из генов CREBBP и EP300 не оказывал почти никакого эффекта на фоторецепторные клетки, а нокаут обоих генов сильно изменял их морфологию и функционирование. Такой эффект был связан со снижением ацетилирования гистонов Н3 и Н4, что является следствием нефункциональности CBP и p300[31].

Показана возможность участия СВР в Шаблон:Нп5[32].

Регуляция

Ацетилтрансферазная активность CBP положительно регулируется фосфорилированием МАР-киназой p42/p44, Cdk2 и протеинкиназой А. При этом фосфорилирование консервативного остатка серина в положении 89 (S89) протеинкиназой С-δ снижает ацетилтрансферазную активность СВР. Ацетилтрансферазная активность СВР может изменяться (как в положительную, так и в отрицательную сторону) при взаимодействии с другими белками. Например, она усиливается при взаимодействии с такими транскрипционными факторами, как Шаблон:Нп5-α, Шаблон:Нп5 и Шаблон:Нп5 и понижается при взаимодействии с транскрипционным фактором Шаблон:Нп5. При этом все перечисленные белки взаимодействуют с одним и тем же сайтом СВР — участком СН3. Механизмы того, как белки, взаимодействующие с СВР в одном и том же сайте, влияют на его активность противоположным образом, в настоящий момент не ясны[7].

В настоящее время разрабатываются искусственные ингибиторы CBP, некоторые из которых могут найти потенциальное применение в медицине (например, ICG-001 подавляет рост раковых клеток в поджелудочной железе[33]). Ингибиторы могут связываться, например, с бромодоменом CBP[34][35].

Клиническое значение

Синдром Рубинштейна — Тейби

Шаблон:Main

Файл:Rubinstein-Taybi Syndrome2.jpg
Больные синдромом Рубинштейна-Тейби с характерными лицевыми аномалиями

Мутации в гене CREBBP вызывают синдром Рубинштейна — Тейби (RTS)[36]. Однако RTS может развиваться и при мутациях гена EP300. Пациенты с RTS характеризуются множественными врождёнными пороками, отставании в умственном развитии и постнатальном развитии, микроцефалией, характерными лицевыми аномалиями, широкими, часто заострёнными пальцами рук и увеличенными пальцами ног. Частота встречаемости этого заболевания составляет 1 случай на 100 тысяч—125 тысяч новорождённых[37]. Как правило, пациенты с RTS имеют повышенный риск развития опухолей. У человека фенотипы, проявляющиеся при гаплонедостаточности по CREBBP и при мелких делециях и мутациях, приводящих к образованию укороченной формы белка, не различаются. У мышей гетерозиготная делеция или укорочение CBP приводит к фенотипу, напоминающему RTS. Список описанных мутаций CREBBP, приводящих к развитию RTS, постоянно пополняется[38][39]. В общем случае к RTS приводят те мутации CREBBP, которые подавляют его гистонацетилтрансферазную активность[7].

Острый миелоидный лейкоз

Шаблон:Main Хромосомные транслокации, затрагивающие CREBBP, связывают с острым миелоидным лейкозом (AML)[13][40]. К AML также могут приводить транслокации в EP300. Более того, транслокации, затрагивающие CREBBP и вызывающие AML, могут быть следствием противораковой химиотерапии (например, при лечении рака молочной железы)[41]. В случае этих сбалансированных транслокаций 5'-конец генов MLL, MOZ или MORF сшивается с 3'-концом гена CBP или p300, и наоборот. Это приводит к образованию химерных белков, например, MLL–CBP и CBP–MLL. Химерные белки, у которых CBP (p300) сливается с другим своим С-концом (MLL–CBP, MLL–p300, MOZ–CBP, MOZ–p300, MORF–CBP), по-видимому, играют ключевую роль в лейкемогенезе, а мРНК, кодирующие обратные белки (например, CBP–MLL), у пациентов с AML не обнаруживаются. В отличие от RTS, при котором CBP и p300 нефункциональны, в случае описанных выше транслокаций HAT-домены CBP и p300 остаются интактными в химерных белках. Однако CBP и p300 начинают работать неправильно (например, они работают не с теми последовательностями), поэтому в случае AML имеют место мутации приобретения, а не утраты функции[7].

Другие злокачественные заболевания

В отличие от p300, который является классическим супрессором опухолей, ситуация с CBP менее ясна. С одной стороны, предрасположенность к опухолеобразованию у пациентов с RTS, а также тот факт, что и CBP, и p300 являются мишенями вирусов, изменяющих ДНК (аденовирус, SV40, папилломавирус человека), говорит о том, что CBP тоже может функционировать как опухолевый супрессор. Однако в тех опухолевых клетках, в которых имелись мутации в CREBBP, мутированной оказывалась только одна аллель, другая же оставалась интактной и функциональной. Это противоречит представлению о CBP как о классическом опухолевом супрессоре[7]. Роль СВР была показана в таких видах карциномы, как рак толстой кишки[42], лёгких[43][44], поджелудочной железы[33] и других раковых заболеваниях.

Установлено, что CBP-зависимый сигнальный путь Wnt/β-катенина находится в постоянно активированном состоянии у раковых клеток, устойчивых к действию противоракового препарата доксорубицина. Нарушение взаимодействия CBP с Шаблон:Нп5, останавливающее работу сигнального пути, фармакологическим путём может восстановить чувствительность раковых клеток к этому препарату и улучшить прогноз для пациента[45]. Кроме того, показано, что ингибитор комплекса CREB-CBP, нафтол-AS-TR-фосфата, может применяться для лечения рака лёгкого[46].

Нарушения со стороны нервной системы

Многие нейродегенеративные заболевания человека (хорея Хантингтона (HD), Шаблон:Нп5 и другие) связаны с удлинением области полиглутаминовых повторов в определённых белках (в частности, Шаблон:Нп5 в случае HD и андрогенового рецептора при синдроме Кеннеди), которое приводит к образованию нерастворимых агрегатов. Они могут связываться с полиглутаминовыми трактами нормальных белков, в частности, CBP, который имеет участок из 18 остатков глутамина (остатки 2199—2216) в своём Q-обогащённом С-конце. При связывании с такими агрегатами происходит инактивация СВР, которая, по-видимому, и обусловливает их токсичность: Шаблон:Нп5 сверхэкспрессия СВР уменьшала смертность клеток в культуре, вызванную образованием глутаминовых агрегатов. В ходе экспериментов с дрозофилами было показано, что развитие нейродегенеративного фенотипа подавлялось при обработке ингибиторами деацетилаз, что служит доказательством необходимости гистонацетилтрансферазной функции CBP для предотвращения развития нейродегенеративных заболеваний[7].

Было показано участие CBP (и р300) в апоптозе нейронов, который происходит при болезни Альцгеймера (AD). Предполагается, что при этом СВР разрушается Шаблон:Нп5, что снижает уровень ацетилирования гистонов. Интересно, что увеличение содержания СВР связано с ранним развитием AD. Было продемонстрировано, что опосредованное пресенилином-1 разрезание N-кадгерина приводило к образованию пептида N-Cad/CTF2, который в цитоплазме связывается с СВР и способствует его протеасомному разрушению. Уменьшение количества СВР приводит к подавлению транскрипции генов, активируемых CREB. Мутации пресенилина-1 наблюдаются при семейных формах AD, причём они могут приводить как утрате, так и приобретению функции CBP[7]. Кроме того, показано, что CBP функционирует как регулятор циркадных ритмов, и его разрушение, индуцированное бета-амилоидом, приводит к нарушению циркадных ритмов при AD[47]. Имеются данные, свидетельствующие о связи СВР с развитием бокового амиотрофического склероза. Предполагается, что препараты, компенсирующие утрату функции СВР, могут использоваться в лечении нейродегенеративных заболеваний[48].

Имеются данные, что нарушение гистонацетилтрансферазной активности CBP вызывает проблемы при формировании долговременной памяти[49].

CBP может быть вовлечён в развитие некоторых психиатрических нарушений. Исследование 2012 года показало, что однонуклеотидные полиморфизмы в гене CREBBP могут быть ассоциированы с развитием шизофрении[50], большого депрессивного расстройства и биполярного аффективного расстройства и влиять на ответ пациентов на лечение[51]. Более того, полиморфизмы в этом гене могут быть связаны с чувствительностью к наркотическим веществам, например, героину, а также алкоголю, и служить факторами развития привыкания к ним[52]. В прилежащем ядре СВР регулирует индуцированное кокаином ацетилирование гистонов и необходим для развития поведенческих реакций, связанных с употреблением кокаина[53].

Другие заболевания

CBP и p300 часто являются мишенями вирусов[19]. Например, показано, что коровый белок вируса гепатита B усиливает транскрипцию генов, подконтрольных CRE, действуя на путь CRE/CREB/CBP[54].

В 2012 году было показано участие CBP в развитии муковисцидоза[55].

Взаимодействия с другими белками

В таблице ниже перечислены ключевые белки, взаимодействующие с различными доменами CREBBP[12].

Домен Белки, которые
с ним взаимодействуют
Группа
TAZ1 Шаблон:Нп5
p53
Шаблон:Нп5
HIF1A
Шаблон:Нп5
STAT2[12]
Общий транскрипционный фактор
Транскрипционный фактор
Транскрипционный фактор
Транскрипционный фактор
Транскрипционный фактор
Транскрипционный фактор
KIX (сайт c-Myb) CREB
c-Myb
p53
FOXO3a[12]
Транскрипционный фактор
Транскрипционный фактор
Транскрипционный фактор
Транскрипционный фактор
KIX (сайт MLL) MLL
p53
FOXO3a
HTLV-1HBZ
Шаблон:Нп5
Шаблон:Нп5
HTLV-1 Tax
Транскрипционный фактор
Транскрипционный фактор
Транскрипционный фактор
Транскрипционный фактор
Транскрипционный фактор
Транскрипционный фактор
Вирусный белок
KIX (два сайта) p53
FOXO3a
Транскрипционный фактор
Транскрипционный фактор
KIX (сайт
связывания неизвестен)
BRCA1
Шаблон:Нп5
Транскрипционный фактор
Транскрипционный фактор
Бромодомен Шаблон:Нп5
p53
Гистон
Транскрипционный фактор
TAZ2 Шаблон:Нп5
Шаблон:Нп5
PCAF
GCN5
p53
FOXO3a
STAT1
Шаблон:Нп5
Белок аденовируса
Общий транскрипционный фактор
Коактиватор
Коактиватор
Транскрипционный фактор
Транскрипционный фактор
Транскрипционный фактор
Транскрипционный фактор
NCBD (IBid) p53
IRF3
Шаблон:Нп5[12]
Транскрипционный фактор
Транскрипционный фактор
Коактиватор
Мотивы LXXLL Ретиноидный X-рецептор
Эстрогеновый рецептор
Андрогеновый рецептор[12]
Ядерный рецептор
Ядерный рецептор
Ядерный рецептор

Примечания

Шаблон:Примечания

Литература

Шаблон:Refbegin

Шаблон:Refend Шаблон:Хорошая статья

  1. 1,0 1,1 Шаблон:Cite pmid
  2. Шаблон:Cite pmid
  3. Шаблон:Cite pmid
  4. Шаблон:Cite web
  5. Шаблон:Cite web
  6. 6,0 6,1 6,2 Шаблон:Статья
  7. 7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7 7,8 7,9 Шаблон:Cite pmid
  8. Шаблон:Cite pmid
  9. Шаблон:Cite pmid
  10. Шаблон:Cite pmid
  11. Шаблон:Cite pmid
  12. 12,0 12,1 12,2 12,3 12,4 12,5 Шаблон:Cite pmid
  13. 13,0 13,1 Шаблон:Cite web
  14. 14,0 14,1 Шаблон:Cite pmid
  15. Шаблон:Cite pmid
  16. Шаблон:Cite pmid
  17. Шаблон:Cite pmid
  18. Шаблон:Cite pmid
  19. 19,0 19,1 Шаблон:Cite pmid
  20. Шаблон:Cite pmid
  21. Шаблон:Cite pmid
  22. Шаблон:Cite pmid
  23. Шаблон:Cite pmid
  24. Шаблон:Cite pmid
  25. Шаблон:Cite pmid
  26. Шаблон:Cite pmid
  27. Шаблон:Cite pmid
  28. Шаблон:Cite pmid
  29. Шаблон:Cite pmid
  30. Шаблон:Cite pmid
  31. Шаблон:Cite pmid
  32. Шаблон:Cite pmid
  33. 33,0 33,1 Шаблон:Cite pmid
  34. Шаблон:Cite pmid
  35. Шаблон:Cite pmid
  36. Шаблон:Cite pmid
  37. Шаблон:Cite pmid
  38. Шаблон:Cite pmid
  39. Шаблон:Cite pmid
  40. Шаблон:Cite pmid
  41. Шаблон:Cite pmid
  42. Шаблон:Cite pmid
  43. Шаблон:Cite pmid
  44. Шаблон:Cite pmid
  45. Шаблон:Cite pmid
  46. Шаблон:Cite pmid
  47. Шаблон:Cite pmid
  48. Шаблон:Cite pmid
  49. Шаблон:Cite pmid
  50. Шаблон:Cite pmid
  51. Шаблон:Cite pmid
  52. Шаблон:Cite pmid
  53. Шаблон:Cite pmid
  54. Шаблон:Cite pmid
  55. Шаблон:Cite pmid