Русская Википедия:FASER
FASER (ForwArd Search ExpeRiment) — один из девяти экспериментов в области физики элементарных частиц, которые проводятся в 2022—2023 годах на Большом адронном коллайдере в ЦЕРН. Цель эксперимента — поиск новых лёгких и слабосвязанных элементарных частиц, а также обнаружение и изучение взаимодействий нейтрино высоких энергий внутри коллайдера[1]. В марте 2023 года FASER сообщил о первом наблюдении нейтрино[2].
Эксперимент проводится в служебном туннеле TI12, который находится на 480 м ниже по течению от точки взаимодействия, используемой в эксперименте ATLAS[3]. Этот туннель ранее использовался для ввода пучка из SPS в ускоритель LEP. В этом месте эксперимент FASER помещается в интенсивный и сильно коллимированный пучок как нейтрино, так и возможных новых частиц. Кроме того, он защищен от ATLAS примерно 100 метрами камня и бетона, что обеспечивает низкий уровень фоновой среды. Эксперимент FASER был одобрен в 2019 году[4][5]. Детектор был построен в течение следующих двух лет и установлен в 2021 году[6]. Эксперимент начал собирать данные в начале запуска 3 LHC летом 2022 года[7][8][9].
Новые изыскания
Основная цель эксперимента FASER — поиск новых лёгких и слабо взаимодействующих частиц, которые ещё не были обнаружены, таких как тёмные фотоны, аксионоподобные частицы и стерильные нейтрино[10][11]. Если эти частицы достаточно лёгкие, они могут рождаться в редких распадах адронов. Таким образом, такие частицы будут преимущественно образовываться в прямом направлении вдоль оси столкновения, образуя сильно коллимированный пучок, и могут унаследовать большую часть энергии протонного пучка LHC. Кроме того, из-за их небольших связей с частицами стандартной модели и больших ускорений эти частицы являются долгоживущими и могут легко перемещаться на сотни метров, не взаимодействуя, прежде чем распадутся на частицы стандартной модели. Эти распады приводят к эффектному сигналу, появлению высокоэнергетических частиц, которые FASER может обнаружить.
В марте 2023 года коллаборация FASER сообщила о своих первых результатах поиска тёмных фотонов. В данных 2022 года не было обнаружено сигнала, соответствующего тёмному фотону, и были установлены ограничения на ранее неограниченное пространство параметров.
Физика нейтрино
LHC является коллайдером частиц с самой высокой энергией, построенным до сих пор, и, следовательно, также источником самых энергетических нейтрино, созданных в контролируемой лабораторной среде. Действительно, столкновения на LHC приводят к большому потоку высокоэнергетических нейтрино всех ароматов, которые сильно коллимируются вокруг оси столкновения пучка и проходят через место FASER.
В 2021 году коллаборация FASER объявила о первом обнаружении кандидатов на коллайдерные нейтрино.[12][13][14][15][16] Данные, использованные для этого открытия, были собраны небольшим пилотным детектором эмульсии с массой мишени 11 кг. Детектор был размещён в служебном туннеле TI18, а данные собирались всего за четыре недели во время запуска LHC 2 в 2018 году. Хотя этот результат не является открытием коллайдерных нейтрино, он подчёркивает потенциал и осуществимость проведения специальных экспериментов с нейтрино на БАК.
В марте 2023 года коллаборация FASER сообщила о первом наблюдении коллайдерных нейтрино[17][18][19]. Для этого они искали события, при которых в центральной части объёма детектора FASERv возникает трек с высоким импульсом, а в самых верхних вето-слоях отсутствует активность, как и ожидалось от взаимодействия мюонных нейтрино. Этот поиск был выполнен с использованием только компонентов электронного детектора.
Для более подробного изучения этих взаимодействий нейтрино FASER также содержит специальный поддетектор FASERv (произносится как FASERnu)[20][21]. Ожидается, что в течение номинального времени работы в несколько лет FASERν зарегистрирует около 10 000 нейтрино[22]. Эти нейтрино обычно имеют энергию в масштабе ТэВ, что позволяет FASERv изучать их взаимодействия в режиме, в котором они в настоящее время не ограничены.
FASERnu сможет исследовать следующие области физики:
- FASERv будет измерять сечения взаимодействия нейтрино с ядром для всех трёх ароматов нейтрино в энергетическом масштабе ТэВ. Обладая способностью идентифицировать аромат нейтрино, он позволит проверить универсальность аромата лептона в рассеянии нейтрино.
- FASERv сможет увидеть наибольшее количество взаимодействий тау-нейтрино, что позволит более подробно изучить эту неуловимую частицу.
- FASERv будет проводить очень точные измерения взаимодействий мюонных нейтрино в энергетическом масштабе, никогда ранее не исследовавшемся. Эти измерения позволят изучить структуру протона и ограничить функции распределения партонов.
- Нейтрино в FASERv в основном образуются при распаде пионов, каонов и очарованных адронов. Таким образом, измерение потоков нейтрино позволяет ограничить рождение этих частиц в кинематическом режиме, который недоступен для других экспериментов на LHC. Это даст новые ключевые данные для экспериментов по астрофизике элементарных частиц.
Детектор
На переднем конце FASER расположен детектор нейтрино FASERν. Он состоит из множества слоёв эмульсионных плёнок, чередующихся с вольфрамовыми пластинами в качестве материала-мишени для взаимодействия нейтрино. За FASERν и на входе в основной детектор находится вето заряженных частиц, состоящее из пластиковых сцинтилляторов. За ним следуют пустой объём распада длиной 1,5 метра и спектрометр длиной 2 метра, которые помещаются в магнитное поле 0,55 Тл . Спектрометр состоит из трёх станций слежения, состоящих из слоёв прецизионных кремниевых ленточных детекторов, для обнаружения заряженных частиц, образующихся при распаде долгоживущих частиц. В конце находится электромагнитный калориметр.
Примечания
Ссылки
- Официальный сайт FASER
- Запись эксперимента FASER на INSPIRE-HEP
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite journal
- Русская Википедия
- Страницы с неработающими файловыми ссылками
- Большой адронный коллайдер
- Эксперименты в физике элементарных частиц
- Страницы с непроверенными переводами
- Страницы, где используется шаблон "Навигационная таблица/Телепорт"
- Страницы с телепортом
- Википедия
- Статья из Википедии
- Статья из Русской Википедии