Русская Википедия:NV-центр

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

NV-центр (Шаблон:Lang-en) или азото-замещённая вакансия в алмазе — это один из многочисленных точечных дефектов алмаза: нарушение строения кристаллической решётки алмаза, возникающее при удалении атома углерода из узла решётки и связывании образовавшейся вакансии с атомом азота.

Уникальность дефекта заключается в том, что его свойства практически аналогичны свойствам атома, будь тот «заморожен» в кристаллической решётке алмаза: электронные спины индивидуального центра легко манипулируются: светом; магнитным, электрическим и микроволновыми полями; — что позволяет записывать квантовую информацию (кубиты) на спине ядра центра. Такая манипуляция возможна даже при комнатной температуре; центр имеет продолжительное (достигающее нескольких миллисекунд) время хранения наведённой спиновой поляризации. В настоящее время — NV-центр может рассматриваться как базовый логический элемент будущего квантового процессора, необходимого для создания квантового компьютера, линий связи с квантовым протоколом безопасности и других применений спинтроники[1][2].

Структура центра

Файл:Diamond Structure.png
Упрощённая структура N-V центра

NV-центр является дефектом кристаллической решётки алмаза. Этот дефект включает в себя вакансию решётки со связанным с ней атомом азота. Размер решётки составляет 3,56 ангстрема; ось симметрии проходит по линии, соединяющей вакансию и атом азота (изображена на иллюстрации как линия [111]).

Методы исследования

Из спектроскопических исследований известно, что этот дефект может иметь заряд: отрицательный (N-V) или нейтральный (N-V0). В исследованиях использовались различные методы: оптическое поглощение[3][4], фотолюминесценция (ФЛ)[5], электронный парамагнитный резонанс (ЭПР)[6][7] и оптически-детектируемый магнитный резонанс (ОДМР)[8], который можно считать гибридом ФЛ и ЭПР; ЭПР даёт наиболее подробную картину взаимодействия. Атом азота имеет пять валентных электронов: три из них — ковалентно связаны с близлежащими атомами углерода; два — с вакансией. Дополнительный электрон — центр захватывает со «стороны» (видимо, от другого атома азота); иногда центр теряет этот электрон, превращаясь в нейтральный.[9]

У негативно заряженного центра (N-V) — электрон находится рядом с вакансией, образуя спиновую пару S=1 с одним из её валентных электронов. Как и в N-V0 — электроны вакансии обмениваются ролями, сохраняя полную тригональную симметрию. Состояние N-V обычно и называют NV-центром. Электрон находится большую часть времени (90%) вблизи вакансии NV-центра.[10]

NV-центры, как правило, случайно разбросаны в теле алмаза — но ионная имплантация позволяет создавать центры в определённо заданном месте.[11]

Энергетическая структура уровней NV-центра

Файл:NV levels.gif
Схема уровней N-V центра. Электронные переходы между основными ³А и возбуждёнными ³Е состояниями, разделёнными 1.945 эВ (637 нм) и определяющими спектр поглощения и люминесценции. Состояние ³А расщеплено на 1027 гаусс (~5.6 µэВ), а состояние ³E — на 508 гаусс[12] (~2.9 µэВ). Числа: 0, −1, +1 близ горизонталей — обозначают величину спина. Расщепление из-за спин-орбитального вырождения — не показано.

Энергетическая структура N-V центров изучалась теоретически и экспериментально. В экспериментах в основном применялся комбинированный способ возбуждения: метод электронного параметрического резонанса и лазерное излучение.

Гамильтониан

Спиновый Гамильтониан центра, у которого в вакансии находится изотоп азота <math>N^{14}</math>, — имеет вид:[13]

<math>H=D\hat{S}^2_z + g \beta \hat{S}_z B + A\hat{I}\hat{S} + g_n \beta_n \hat{I}_z B + Q\hat{I}^2_z </math>

…комментарий к которому приведён в таблице 1.

Таблица 1
D и A тензоры тонкого и сверхтонкого расщепления
Q тензор квадрупольного ядерного расщепления
<math>g, g_n </math> электронный и ядерный факторы <math>g</math>
<math>\beta,\beta_{e,n}</math> магнетоны Бора
Таблица 2
D, MHz A, MHz Q, MHz
<math>^3 A</math> 2870 −2.166 4.945
<math>^3 E</math> 1420 40

Схема уровней — представлена на рисунке. Чтобы определить собственные состояния центра — его рассматривают как молекулу; в расчётах применяется метод линейной комбинации атомных орбиталей и используется теория групп, учитывающая симметрии: как алмазной кристаллической структуры, так и самого NV. Энергетические уровни помечены в соответствии с симметрией группы <math>C_{3V}</math>, то есть: <math>A_{1}</math>, <math>A_{2}</math> и <math>E</math>.[14]

Числа «3» в ³A и «1» в 1A — представляют число спиновых состояний, разрешённых для ms: спиновую мультиплетность, лежащую от −S до S при полном числе 2S+1 возможных состояний (если S=1 — ms может принимать значения: −1, 0, 1). Уровень 1A — предсказан теорией, и играет важную роль в подавлении фотолюминесценции, — но прямого экспериментального наблюдения этого состояния пока не было…

Файл:NV spectrum.gif
Спектр флуоресценции N-V центра при температуре 9 Кo. Узкий пик является т. н. люминесценцией нулевой фононной линии (анг. zero phonon line). В этом пике содержится около 4 % всей люминесценции

В отсутствие внешнего магнитного поля — электронные состояния (основное и возбуждённое) расщеплены магнитным взаимодействием между двумя неспаренными электронами N-V центра: при параллельных спинах электронов (ms=±1) — их энергия больше, чем в случае с антипараллельными спинами (ms=0).

Чем дальше отделены электроны — тем слабее взаимодействие D (приблизительно, D ~ 1/r³).[15] Иными словами, меньшее расщепление возбуждённого состояния — означает большую удалённость друг от друга электронов. Когда N-V находится во внешнем магнитном поле — оно не влияет ни на ms=0 состояния, ни на 1A состояние (из-за того, что S=0), но расщепляет ms=±1 уровни; если же магнитное поле сориентировано вдоль оси дефекта и его величина достигает 1027 гаусс (или 508 гаусс), то уровни ms=−1 и ms=0 в основном (или возбуждённом) состоянии имеют одинаковую энергию. При этом они сильно взаимодействуют через т. н. спиновую поляризацию, что очень сильно влияет на интенсивности: оптического поглощения и люминесценции этих уровней.[12]

Для того чтобы это понять — необходимо иметь в виду, что переходы между электронными состояниями происходят с сохранением полного спина. По этой причине, переходы ³E↔1A и 1A↔³A — безызлучательные и тушат люминесценцию, — тогда как переход ms = −1 ↔ 0 запрещён в отсутствие поля и становится разрешённым, когда магнитное поле перемешивает ms=−1 и ms=0 уровни основного состояния. Результатом является то, что интенсивность люминесценции можно сильно модулировать магнитным полем.

Возбуждённое состояние ³E — дополнительно расщеплено, благодаря орбитальному вырождению и спин-орбитальному взаимодействию. Это расщепление может быть промодулировано внешним статическим полем: как электрическим, так и магнитным.[16][17]

Расстояние между уровнями <math>m_s=0</math> и <math>m_s=\pm1</math> приходится на микроволновый диапазон (~2.88 ГГц). Облучая центр микроволновым полем, можно изменять населённость подуровней основного состояния — и тем самым модулировать интенсивность люминесценции. Эта техника называется методом электронного парамагнитного резонанса.

Сила осциллятора перехода <math>(^3A \Leftrightarrow ^3E) </math>

Переход из основного триплетного состояния A³ в возбуждённое триплетное состояние Е³ имеет большую силу осциллятора: 0,12 (для сравнения: D1 линия Rb87 имеет 0.6956) — что позволяет легко детектировать этот переход оптическими методами. Хотя тонкая структура возбуждённого состояния сильно зависит от окружения центра, но известно, что переход из возбуждённого ms=0 (³E) в основное ms=0 (³A) состояние сохраняет спин состояния — тогда как переход из состояний ms=±1 (³E) в ms=0 (³A) происходит безызлучательным способом. Этот переход осуществляется в два этапа: через синглетное состояние 1A.

Существует также дополнительное расщепление состояний ms=±1, являющееся результатом сверхтонкого взаимодействия между ядерным и электронным спинами. В итоге, спектр поглощения и люминесценции N-V центра состоит приблизительно из дюжины узких линий разделённых на несколько МГц—ГГц. Интенсивность и положение этих линий могут быть промодулированы следующими способами:

Файл:NV-Setup.gif
Установка для исследования свойств NV-центров. Основа установки — конфокальный микроскоп (состоящий из высокоапертурного иммерсионного объектива OBJ (NA=1.45), линз, одномодового оптического волокна и дихроичных зеркал). SPCM — счётчик одиночных фотонов; гальванометр — сканирует пучок света от зелёного лазера по поверхности образца.
  • Амплитуда и направление магнитного поля, которое расщепляет состояния ms = ±1 в основном и в возбуждённых термах;
  • Амплитуда и направление напряжений: механического (простое сжатие алмаза) или электрического;[16][17]
  • Непрерывное микроволновое излучение;[17]
  • Лазерное излучение, возбуждающее селективно тот или иной уровень основного состояния:[17][18] импульсное микроволновое излучение возбуждает в центрах динамические эффекты (Раби перевёртывание, Раби осцилляции).[19][20][21][22][23]

Микроволновый импульс когерентно возбуждает электронные спины центра; за состоянием электронных спинов следят по флуоресценции оптических переходов. Динамические эффекты весьма важны при создании квантовых компьютеров.

Тонкий оптический спектр

Файл:Correlation G2.gif
Корреляционная функция интенсивности излучения NV-центра <math> g^2(\tau)</math>. Измерение было сделано по методу Хэнбери Браун-Твисс (Hanbury Brown and Twiss). Из кривой можно сделать вывод, что одиночный NV-центр является источником одиночных фотонов (antibunching, <math> g^2(\tau)</math> <1 при <math> \tau =0</math>).

Тонкий оптический спектр NV-центра определяется несколькими факторами:

  • Механическим напряжением внутри кристалла;
  • Присутствием атомов в окружении NV-центра:
    • Изотоп азота 14N;
    • Изотоп углерода 13C;
      — имеющих ядерный спин равный 1 и ½, соответственно. Спин-спиновое взаимодействие ядра и электронов приводит к дополнительному усложнению спектра центра.

Изотопы 15N и 12C имеют ядерный спин равный ½ и 0, соответственно.

Ширина спектра флуоресценции нулевой фононной линии

Ширина спектра флуоресценции Шаблон:Iw <math>\gamma(T)</math> при температурах T < 10 K постоянна и равна 13 МГц. С повышением температуры — ширина растёт по закону: <math>{\gamma(T)= 2\pi\times~16.2 MHz + c_2 r T^5}</math>,

где <math>{c_2=(9.2\pm 0.5)\times 10^{-7} K^{-5}}</math>, и <math>{r = (12.5 ns)^{-1}}</math>. Такую зависимость объясняют перемешиванием спиновых состояний в возбуждённом состоянии <math>{^3}E </math>.[24]


Изготовление

Даже высокочистый природный и синтетический (IIa-типа) алмаз содержит небольшую концентрацию NV-центров. (Высокочистый синтетический алмаз изготавливают с помощью химического осаждения из паровой фазы (CVD)). Если же концентрация центров недостаточна, то образцы облучают и отжигают. Облучение ведут высокоэнергетическими частицами (10—80 кэВ); это может быть поток: электронов, протонов, нейтронов и гамма-частиц. NV-центры создаются на глубине до 60 мкм. Интересно, что NV0 в основном залегают до 0.2 мкм глубин. Созданные вакансии при комнатной температуре малоподвижны, однако при повышении температуры (выше 800С) их подвижность значительно вырастает. Атом азота, внедрённый в решётку, захватывает одну из вакансий и создаёт с другой соседней вакансией NV.[25][26]

Алмаз известен тем, что его решётка имеет внутренние напряжения, которые расщепляют, смещают и уширяют уровни NV-центра. Для регистрации узких линий (~10 MHz) на переходе <math>^3A \Leftrightarrow ^3E</math> нужно принимать особые меры к качеству кристалла.[27] Для этого используют высоко-чистый природный алмаз или синтетически изготовленный (IIa-типа).

Для исследования центров обычно применяют конфокальный сканирующий микроскоп, имеющий субмикронное разрешение (~250 нм).

Примечания

Шаблон:Примечания Шаблон:Квантовая информатика