Русская Википедия:ONNX
Шаблон:Программа ONNX (Open Neural Network Exchange) — открытая библиотека программного обеспечения для построения нейронных сетей глубокого обучения. С помощью ONNX ИИ-разработчики могут обмениваться моделями между различными инструментами и выбирать наилучшую комбинацию этих инструментов. ONNX разрабатывается и поддерживается совместно компаниями Microsoft, Facebook, Amazon и другими партнерами как проект с открытым исходным кодом[1][2].
ONNX позволяет обучать модели в рамках одной среды, а затем переносить их в другую среду для распознавания лиц, распознавания жестов или объектов и т. д. Это позволяет разработчикам использовать правильную комбинацию инструментов. Модели ONNX в настоящее время поддерживаются в Caffe2, Microsoft Cognitive Toolkit, MXNet, PyTorch и OpenCV, и есть интерфейсы для многих других популярных фреймворков и библиотек.
ONNX Model Zoo — это коллекция моделей глубокого обучения с предварительным обучением, доступных в формате ONNX. Каждая модель поставляется с интерактивной оболочкой IPython для обучения модели и выработки соответствующей модели. Записные книжки написаны на Python и содержат ссылки на набор обучающих данных, а также ссылки на оригинальный научный документ, описывающий архитектуру модели.
История
Первоначально ONNX назывался Toffee[3] и был разработан командой PyTorch в Facebook[4]. В сентябре 2017 года он был переименован в ONNX и анонсирован Facebook и Microsoft.[5] Позже IBM, Huawei, Intel, AMD, Arm и Qualcomm объявили о поддержке этой инициативы[6].
ONNX.js
ONNX.js является JavaScript-библиотекой для запуска ONNX модели в браузерах и на Node.js. С ONNX.js веб-разработчики могут интегрировать и тестировать предварительно обученные модели ONNX непосредственно в веб-браузере. Это имеет следующие преимущества: сокращение взаимодействия сервер-клиент, защита пользовательских данных, кроссплатформенное машинное обучение без установки программного обеспечения на клиенте.
ONNX.js может быть запущен как на CPU, так и на GPU. Для работы на процессоре используется WebAssembly. Это позволит модели работать практически на родной скорости. Кроме того, ONNX.js использует Шаблон:Нп3 для обеспечения «многопоточной» вычислительной среды распараллеливания. Эмпирическая оценка показывает очень многообещающие улучшения производительности процессора, используя все преимущества WebAssembly и Web Workers. Для работы на графических процессорах WebGL является стандартом для доступа к функциям графического процессора[7][8][9].
См. также
Примечания
Ссылка
- Microsoft Connect() 2018: ONNX-Runtime für Machine Learning wird Open Source
- Шаблон:GitHubШаблон:Ref-en
Шаблон:Вс Шаблон:Программы глубинного обучения Шаблон:Свободное и открытое программное обеспечение Microsoft
- Русская Википедия
- Страницы с неработающими файловыми ссылками
- Прикладное машинное обучение
- Применение искусственного интеллекта
- Искусственные нейронные сети
- Анализ данных
- Цифровая обработка изображений
- Машинное обучение
- Библиотеки Python
- Глубокое обучение
- Программное обеспечение с лицензией MIT
- Страницы, где используется шаблон "Навигационная таблица/Телепорт"
- Страницы с телепортом
- Википедия
- Статья из Википедии
- Статья из Русской Википедии