Русская Википедия:RISC-V
RISC-V — расширяемая открытая и свободная система команд и процессорная архитектура на основе концепции RISC[1] для управления микропроцессорами и микроконтроллерами. Проекты и стандарты архитектурных описаний RISC-V свободно доступны и бесплатны для любого использования, включая коммерческие реализации непосредственно в кремнии или для конфигурирования ПЛИС. Имеет зарезервированные в спецификации биты для кодирования расширений состава команд.
Стартовала в 2010 году как исследовательский проект при непосредственном участии Дэвида Паттерсона[2][3] в Калифорнийском университете Беркли в США. В настоящее время многие нынешние участники проектов развития RISC-V являются добровольцами, не связанными с университетом. В отличие от других академических проектов, которые обычно сосредоточены на простоте и образовательных целях, в набор команд RISC-V сразу проектируется для широкого круга компьютерных применений.
Для устойчивого развития, стандартизации и продвижения RISC-V в 2015 году создан международный фонд RISC-V[4] и ассоциация со штаб-квартирой в Цюрихе[5] в Швейцарии. С 2018 года RISC-V Foundation работает в партнёрстве с The Linux Foundation[6]. В руководство и технические комитеты входят две русские компании разработчики процессорных ядер — Syntacore[7] и CloudBEAR. В феврале 2022 года компания Intel объявила[8] об инвестировании в развитие RISC-V одного миллиарда долларов и вошла в состав руководства RISC-V. В сентябре 2022 года в России образован Альянс RISC-V[9][10]. По состоянию на декабрь 2022 года 13 из 25 мест в совете директоров RISC-V занимают китайские компании и организации, ведущую роль из которых занимает Китайская академия наук.
Базовая спецификация «RV32I»
Базовая спецификация «RV32I» (RV — RISC-V, 32-разрядная, I означает Integer — целочисленную арифметику и целочисленные регистры) включает 39 инструкций. Используется 6 типов кодирования инструкций (форматов).
Базовые расширения:[11]
- M — целочисленное умножение/деление
- A — атомарные операции с памятью
- F и D — вычисления с плавающей точкой с дополнительным набором регистров (одинарной Float и двойной Double точности)
- C — сжатый формат команд (подмножество RV32I), для удвоения плотности упаковки в машинном слове наиболее востребованных стандартных инструкций
- E — инструкции для встраиваемых систем и только 16 регистров (применяется, например, для процессоров в IoT)
Система команд
В архитектуре RISC-V имеется обязательное для реализации небольшое подмножество команд (набор инструкций I — Integer) и несколько стандартных опциональных расширений.
В базовый набор входят инструкции условной и безусловной передачи управления/ветвления, минимальный набор арифметических/битовых операций на регистрах, операций с памятью (load/store), а также небольшое число служебных инструкций.
Операции ветвления не используют каких-либо общих флагов как результатов ранее выполненных операций сравнения, а непосредственно сравнивают свои регистровые операнды. Базис операций сравнения минимален, а для поддержки комплементарных операций операнды просто меняются местами.
Базовое подмножество команд использует следующий набор регистров: специальный регистр x0 (zero), 31 целочисленный регистр общего назначения (x1 — x31), регистр счётчика команд (PC, используется только косвенно), а также множество CSR (Control and Status Registers, может быть адресовано до 4096 CSR).
Для встраиваемых применений может использоваться вариант архитектуры RV32E (Embedded) с сокращённым набором регистров общего назначения (первые 16). Уменьшение количества регистров позволяет не только экономить аппаратные ресурсы, но и сократить затраты памяти и времени на сохранение/восстановление регистров при переключениях контекста.
При одинаковой кодировке инструкций в RISC-V предусмотрены реализации архитектур с 32-, 64- и 128-битными регистрами общего назначения и операциями (RV32I, RV64I и RV128I, соответственно).
Разрядность регистровых операций всегда соответствует размеру регистра, а одни и те же значения в регистрах могут трактоваться как целые числа как со знаком, так и без знака.
Нет операций над частями регистров, нет каких-либо выделенных «регистровых пар».
Операции не сохраняют где-либо биты переноса или переполнения, что приближено к модели операций в языке программирования Си. Также аппаратно не генерируются исключения по переполнению и даже по делению на 0. Все необходимые проверки операндов и результатов операций должны производиться программно.
Целочисленная арифметика расширенной точности (большей, чем разрядность регистра) должна явно использовать операции вычисления старших битов результата. Например, для получения старших битов произведения регистра на регистр имеются специальные инструкции.
Размер операнда может отличаться от размера регистра только в операциях с памятью. Транзакции к памяти осуществляются блоками, размер в байтах которых должен быть целой неотрицательной степенью 2, от одного байта до размера регистра включительно. Операнд в памяти должен иметь «естественное выравнивание» (адрес кратен размеру операнда).
Архитектура использует только модель little-endian — первый байт операнда в памяти соответствует младшим битам значений регистрового операнда.
Для пары инструкций сохранения/загрузки регистра операнд в памяти определяется размером регистра выбранной архитектуры, а не кодировкой инструкции (код инструкции один и тот же для RV32I, RV64I и RV128I, но размер операндов 4, 8 и 16 байт соответственно), что соответствует размеру указателя, типам языка программирования C size_t или разности указателей.
Для всех допустимых размеров операндов в памяти, меньших, чем размер регистра, имеются отдельные инструкции загрузки/сохранения младших битов регистра, в том числе для загрузки из памяти в регистр есть парные варианты инструкций, которые позволяют трактовать загружаемое значение как со знаком (старшим знаковым битом значения из памяти заполняются старшие биты регистра) или без знака (старшие биты регистра устанавливаются в 0).
Инструкции базового набора имеют длину 32 бита с выравниванием на границу 32-битного слова, но в общем формате предусмотрены инструкции различной длины (стандартно — от 16 до 192 бит с шагом в 16 бит) с выравниванием на границу 16-битного слова. Полная длина инструкции декодируется унифицированным способом из её первого 16-битного слова.
Для наиболее часто используемых инструкций стандартизовано применение их аналогов в более компактной 16-битной кодировке (C — Compressed extension).
Операции умножения, деления и вычисления остатка не входят в минимальный набор инструкций, а выделены в отдельное расширение (M — Multiply extension). Имеется ряд доводов в пользу разделения и данного набора на два отдельных (умножение и деление).
Стандартизован отдельный набор атомарных операций (A — Atomic extension).
Поскольку кодировка базового набора инструкций не зависит от разрядности архитектуры, то один и тот же код потенциально может запускаться на различных RISC-V архитектурах, определять разрядность и другие параметры текущей архитектуры, наличие расширений системы инструкций, а потом автоконфигурироваться для целевой среды выполнения.
Спецификацией RISC-V предусмотрено несколько областей в пространстве кодировок инструкций для пользовательских «X-расширений» архитектуры, которые поддерживаются на уровне ассемблера, как группы инструкций custom0 и custom1.
Список наборов команд
Сокращение | Наименование | Версия | Статус |
---|---|---|---|
Базовые наборы | |||
RVWMO | Базовая модель согласованности памяти | 2.0 | Шаблон:Yes |
RV32I | Базовый набор с целочисленными операциями, 32-битный | 2.1 | Шаблон:Yes |
RV64I | Базовый набор с целочисленными операциями, 64-битный | 2.1 | Шаблон:Yes |
RV32E | Базовый набор с целочисленными операциями для встраиваемых систем, 32-битный, 16 регистров | 1.9 | Шаблон:No |
RV128I | Базовый набор с целочисленными операциями, 128-битный | 1.7 | Шаблон:No |
Часть 1 Стандартные непривилегированные наборы команд | |||
M | Целочисленное умножение и деление (Integer Multiplication and Division) | 2.0 | Шаблон:Yes |
A | Атомарные операции (Atomic Instructions) | 2.1 | Шаблон:Yes |
F | Арифметические операции с плавающей запятой над числами одинарной точности (Single-Precision Floating-Point) | 2.2 | Шаблон:Yes |
D | Арифметические операции с плавающей запятой над числами двойной точности (Double-Precision Floating-Point) | 2.2 | Шаблон:Yes |
Q | Арифметические операции с плавающей запятой над числами четверной точности | 2.2 | Шаблон:Yes |
C | Сокращённые имена для команд (Compressed Instructions) | 2.2 | Шаблон:Yes |
Counters | Инструкции для счетчиков производительности и таймеров — наборы Zicntr и Zihpm | 2.0 | Шаблон:No |
L | Арифметические операции над десятичными числами с плавающей запятой (Decimal Floating-Point) | 0.0 | Шаблон:No |
B | Битовые операции (Bit Manipulation) | 0.36 | Шаблон:No |
J | Двоичная трансляция и поддержка динамической компиляции (Dynamically Translated Languages) | 0.0 | Шаблон:No |
T | Транзакционная память (Transactional Memory) | 0.0 | Шаблон:No |
P | Короткие SIMD-операции (Packed-SIMD Instructions) | 0.1 | Шаблон:No |
V | Векторные расширения (Vector Operations) | 1.0 | Шаблон:Yes |
Zicsr | Инструкции для работы с контрольными и статусными регистрами (Control and Status Register (CSR) Instructions) | 2.0 | Шаблон:Yes |
Zifencei | Инструкции синхронизации пототоков команд и данных (Instruction-Fetch Fence) | 2.0 | Шаблон:Yes |
Zihintpause | Pause Hint | 2.0 | Шаблон:Yes |
Zihintntl | Non-Temporal Locality Hints | 0.2 | Шаблон:No |
Zam | Расширение для смещённых атомарных операций (Extension for Misaligned Atomics) | 0.1 | Шаблон:No |
Zfh | Extensions for Half-Precision Floating-Point | 1.0 | Шаблон:Yes |
Zfhmin | Extensions for Half-Precision Floating-Point | 1.0 | Шаблон:Yes |
Zfinx | Standard Extensions for Floating-Point in Integer Registers | 1.0 | Шаблон:Yes |
Zdinx | Standard Extensions for Floating-Point in Integer Registers | 1.0 | Шаблон:Yes |
Zhinx | Standard Extensions for Floating-Point in Integer Registers | 1.0 | Шаблон:Yes |
Zhinxmin | Standard Extensions for Floating-Point in Integer Registers | 1.0 | Шаблон:Yes |
Ztso | Расширение для модели согласованности памяти RVTSO (Extension for Total Store Ordering) | 0.1 | Шаблон:Yes |
G | = IMAFD Zicsr Zifencei Обобщенное/сокращёное обозначение для набора расширений | Шаблон:N/a | Шаблон:N/a |
Часть 2 Стандартные наборы команд для привилегированных режимов | |||
Machine ISA | Инструкции аппаратного уровня | 1.12 | Шаблон:Yes |
Supervisor ISA | Инструкции уровня супервизора | 1.12 | Шаблон:Yes |
Svnapot Extension | (Extension for NAPOT Translation Contiguity) | 1.0 | Шаблон:Yes |
Svpbmt Extension | (Extension for Page-Based Memory Types) | 1.0 | Шаблон:Yes |
Svinval Extension | (Extension for Fine-Grained Address-Translation Cache Invalidation) | 1.0 | Шаблон:Yes |
Hypervisor ISA | Инструкции уровня гипервизора | 1.0 | Шаблон:Yes |
В 32-битных микроконтроллерах и для других встраиваемых применений используется набор RV32EC. В 64-битных процессорах может быть набор групп RV64GC, то же самое в полной записи — RV64IMAFDC.
Форматы машинных команд
Формат 32-битной машинной команды (признаки — младшие биты всегда «11» и 2-4 биты ≠̸ «111»)
Тип | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Регистр/регистр | funct7 | rs2 | rs1 | funct3 | rd | код операции | 1 | 1 | ||||||||||||||||||||||||
С операндом | ± | imm[10:0] | rs1 | funct3 | rd | код операции | 1 | 1 | ||||||||||||||||||||||||
С длинным операндом | ± | imm[30:12] | rd | код операции | 1 | 1 | ||||||||||||||||||||||||||
Сохранение | ± | imm[10:5] | rs2 | rs1 | funct3 | imm[4:0] | код операции | 1 | 1 | |||||||||||||||||||||||
Ветвление | ± | imm[10:5] | rs2 | rs1 | funct3 | imm[4:1] | [11] | код операции | 1 | 1 | ||||||||||||||||||||||
Переход | ± | imm[10:1] | [11] | imm[19:12] | rd | код операции | 1 | 1 |
- rs1 — номер регистра в котором находится первый операнд
- rs2 — номер регистра в котором находится второй операнд
- rd — номер регистра в который будет записан результат
Регистры
RISC-V имеет 32 (или 16 для встраиваемых применений) целочисленных регистра. При реализации вещественных групп команд есть дополнительно 32 вещественных регистра.
Рассматривается вариант включения в стандарт дополнительного набора из 32 векторных регистров с вариативной длиной обрабатываемых значений, длина которых указывается в CSR vlenb[12].
Для операций над числами в бинарных форматах плавающей запятой используется набор дополнительных 32 регистров FPU (Floating Point Unit), которые совместно используются расширениями базового набора инструкций для трёх вариантов точности: одинарной — 32 бита (F extension), двойной — 64 бита (D — Double precision extension), а также четверной — 128 бит (Q — Quadruple precision extension).
Имя регистра
в RISC-V |
Имя
в EABI |
Имя
в psABI |
Описание
в psABI |
Кто сохраняет
в psABI |
---|---|---|---|---|
32 целочисленных регистра | ||||
x0 | zero | zero | Всегда ноль | Шаблон:N/a |
x1 | ra | ra | Адрес возврата (return address) | Вызывающий |
x2 | sp | sp | Указатель стека (stack pointer) | Вызываемый |
x3 | gp | gp | Глобальный указатель (global pointer) | Шаблон:N/a |
x4 | tp | tp | Потоковый указатель (thread pointer) | Шаблон:N/a |
x5 | t0 | t0 | Temporary / альтернативный адрес возврата | Вызывающий |
x6 | s3 | t1 | Temporary | Вызывающий |
x7 | s4 | t2 | Temporary | Вызывающий |
x8 | s0/fp | s0/fp | Saved register / frame pointer | Вызываемый |
x9 | s1 | s1 | Saved register | Вызываемый |
x10 | a0 | a0 | Аргумент (argument) / возвращаемое значение | Вызывающий |
x11 | a1 | a1 | Аргумент (argument) / возвращаемое значение | Вызывающий |
x12 | a2 | a2 | Аргумент (argument) | Вызывающий |
x13 | a3 | a3 | Аргумент (argument) | Вызывающий |
x14 | s2 | a4 | Аргумент (argument) | Вызывающий |
x15 | t1 | a5 | Аргумент (argument) | Вызывающий |
x16 | s5 | a6 | Аргумент (argument) | Вызывающий |
x17 | s6 | a7 | Аргумент (argument) | Вызывающий |
x18-27 | s7-16 | s2-11 | Saved register | Вызываемый |
x28-31 | s17-31 | t3-6 | Temporary | Вызывающий |
32 дополнительных регистра с плавающей точкой | ||||
f0-7 | ft0-7 | Floating-point temporaries | Вызывающий | |
f8-9 | fs0-1 | Floating-point saved registers | Вызываемый | |
f10-11 | fa0-1 | Floating-point arguments/return values | Вызывающий | |
f12-17 | fa2-7 | Floating-point arguments | Вызывающий | |
f18-27 | fs2-11 | Floating-point saved registers | Вызываемый | |
f28-31 | ft8-11 | Floating-point temporaries | Вызывающий |
Файл:Регистры процессора RISC-V.png
Вызовы подпрограмм, переходы и ветвления
Арифметические и логические наборы команд
Атомарные операции с памятью
Сокращённые команды
Команды для встраиваемых применений
Привилегированные наборы команд
Битовые операции
Компактный набор команд для SIMD
Операции с векторами
Команды для отладки
Реализации
В рамках проекта создано и опубликовано под свободной лицензией шесть дизайнов микропроцессоров с архитектурой RISC-V: генератор 64-разрядных Rocket (7 октября 2014[13][14]) и пять упрощённых учебных ядер «Sodor» с различными микроархитектурами.
Также опубликовано несколько симуляторов (включая qemu и ANGEL — JavaScript-симулятор, работающий в браузере), компиляторов (LLVM, GCC), вариант ядра Linux для работы на RISC-V и компилятор дизайнов Chisel, который позволяет получать Verilog-код. Также опубликованы верификационные тесты[15].
Некоммерческая организация lowRISC планирует создание системы на кристалле на базе 64-битного ядра Rocket RISC-V с последующим массовым производством чипов[16][17].
На конференции RISC-V Workshop 2017 стало известно, что компания Esperanto Technologies разрабатывает 64-битный высокопроизводительный процессор общего назначения на системе команд RISC-V с гетерогенной архитектурой с высокой степенью параллелизма (напоминающий по строению процессор Cell), который в максимальной конфигурации будет содержать 16 ядер «ET-Maxion» (представляют собой конвейеры с неупорядоченным выполнением команд и работающие с данными с плавающей запятой) и 4096 ядер «ET-Minion» (конвейеры с последовательным выполнением команд и блоком с векторными вычислениями в каждом ядре)[18].
Компания Western Digital заявила, что в партнёрстве с компанией Esperanto, она повысит текущий статус процессорной архитектуры RISC-V с уровня микроконтроллеров до уровня высокопроизводительных решений и создаст вычислительную архитектуру нового поколения для обработки «больших данных»[19], а также экосистему быстрого доступа к данным — речь идёт о создании специализированных RISC-V-ядер для построения архитектуры «процессор в памяти» (processor-in-memory)[20].
IP-ядра
Ряд компаний предлагают готовые блоки IP-ядер на базе архитектуры RISC-V, среди них:
- ECHX1 — компания Western Digital (США),
- Rocket — Калифорнийский университет в Беркли и компания SiFive (США),
- ORCA — компания Vectorblox (Канада),
- PULPino — Высшая техническая школа Цюриха (Швейцария) и Болонский университет (Италия),
- Hummingbird E200 — компания Nuclei System Technology (Китай),
- AndeStar V5 — компания Andes Technology (Тайвань)[21]),
- Shakti — Индийский технологический институт в Мадрасе (Индия),
- BM-310, BI-350, BI-651, BI-671 — компания Клаудбеар (Россия),
- Семейство SCR компании Синтакор (Россия)[22].
Процессоры и микроконтроллеры
Серийные процессоры и микроконтроллеры на базе архитектуры RISC-V в формате системы на кристалле.
Микропроцессоры:
- 2018 — SiFive: Freedom U540 (64 бита, 4+1 ядер, 1,5 ГГц, 28 нм)[23][24][25][26]
- 2019 — Alibaba: XuanTie 910 (64 бита, 16 ядер, нейроускоритель, 2,5 ГГц, 12 нм)[27][28][29][30]
- 2020 — SiFive: Freedom U740 (64 бита, 4+1 ядер, PCIe 3, DDR4 ECC, Ethernet 1G, QSPI, 1,5 ГГц)[1] Шаблон:Wayback[2] Шаблон:Wayback
Микроконтроллеры, выпущенные в 2017—2019 годах:
- Western Digital: SweRV Core (32 бита, 2 ядра, 1,8 ГГц, 28 нм)[31][32]
- SiFive: FE310 (32 бита, 1 ядро, 870 МГц — 28 нм, 370 МГц — 55 нм)[23][24]
- Kendryte: K210 (64 бита, 2 ядра + нейроускоритель, 600 МГц, 28 нм, 500 мВт)[33][34][35]
- GreenWaves: GAP8 (32 бита, 8+1 ядер + нейроускоритель, 250 МГц, 55 нм, 100 мВт)[36]
- NXP: RV32M1 (32 бита, 2 гибридных ядра ARM-M4F/RISC-V + ARM-M0+/RISC-V, 48-72 МГц)[37]
- WCH: CH572 (60 МГц, корпус QFN28)[38] контроллер BLE + Zigbee + USB + Ethernet + Touchkey
- HUAMI: MHS001 Huangshan № 1 (4 ядра, нейроускоритель, 55 нм, 240 МГц)[39] энергоэффективный процессор для носимых устройств и IoT
- GigaDevice: GD32VF103 (1 ядро, 32 бита, 108 МГц, ОЗУ до 32 кБ, ПЗУ до 128 кБ)[40][41] микроконтроллер (не путать с семейством GD32F103).
- FADU: Annapurna FC3081/FC3082 (64 бита, многоядерный, 7 нм, 1,7 Вт)[42][43][44] контроллер для NVMe SSD
- BitMain: Sophon Edge TPU BM1880 (64 бита, 1 ядро RV64GC 1 ГГц + 2 ядра ARM A53 1,5 ГГц, 2,5 Вт) нейроускоритель 1 TOPS на INT8 для IoT и краевых вычислений[45][46]
- Текон: Дружба (32 бита, 1 ядро, 250 МГц, 28 нм, 0,5 Вт)[47][48]
Микроконтроллеры, выпущенные в 2020 году:
- ONiO: ONiO.zero (16/32 бита, 1 кБ ПЗУ, 2 кБ ОЗУ, 8/16/32 кБ ППЗУ, 1-24 МГц, 0,36-1,44 Вт, встроенный радиоэлектро генератор на 800/900/1800/1900/2400 МГц) BLE, 802.15.4 UWB[49][50]
- WCH: CH32V103 (32 бита, 10/20КБ ОЗУ, 32/64 КБ ППЗУ, до 80 МГц, корпуса LQFP48, QFN48 или LQFP64)[51] универсальный контроллер с USB 2.0, SPI, I2C, GPIO, USART, TouchKey, RTC, TIM, ADC
- Миландр: К1986ВК025 (32-битное ядро BМ-310S CloudBEAR, ОЗУ 112 Кбайт, ППЗУ 256+8 Кбайт, ПЗУ 16 Кбайт, 60 МГц, 90 нм фабрика TSMC, 7 каналов 24-битных метрологических АЦП, сопроцессоров для шифров «Кузнечик», «Магма» и AES, корпус QFN88 10 х 10 мм)
- Espressif: ESP32-C3 (32-битное ядро RV32IMC, 400 Кбайт SRAM, 384 Кбайт ПЗУ, 160 МГц, Wi-Fi, Bluetooth LE 5.0, по контактам совместим с ESP8266)[52]
- Bouffalo Lab: BL602 и BL604 (32-битный, динамическая частота от 1 МГц до 192 МГц, 276 КБ SRAM, 128 КБ ПЗУ, Wi-Fi, Bluetooth LE)[53]
- Cmsemicon: ANT32RV56xx (ядро RV32EC, 48 МГц, 32+8 Кбайт SRAM, 64 Кбайт)[54]
Микроконтроллеры, выпущенные в 2021 году:
- Микрон (Россия): MIK32 (32-битное RV32IMC ядро SCR1 Syntacore, 1-32 МГц, фабрика Микрон, ОЗУ 16 КБ, ППЗУ 8 КБ, 64 входа/выхода, АЦП 12 бит 8 каналов до 1 МГц;, ЦАП 12 бит 4 канала до 1 МГц, криптография ГОСТ Р 34.12-2015 «Магма», «Кузнечик» и AES 128)[55][56]
См. также
- ARM – семейство лицензируемых 32-битных и 64-битных микропроцессорных ядер разработки компании ARM Limited
- OpenPOWER — коллаборация вокруг архитектуры IBM Power, основанная в 2013 году IBM, Google, Mellanox, NVIDIA
- OpenSPARC — свободная (GPL) реализация архитектуры SPARC V9 от 2005 года
- OpenRISC — свободная архитектура 2000 года с GPL-реализацией or1k
- LEON — свободные реализации (GPL, LGPL) архитектуры SPARC V8, появившиеся в 1997 году
- MIPS (MIPS Open) — наборы команд и архитектура, имеющие свободную лицензию на некоторые наборы команд с конца 2018 до конца 2019 года[57]
Примечания
Литература
- Instruction Sets Should Be Free: The Case For RISC-V Шаблон:Wayback // Публикация Krste Asanović и Дэвида Паттерсона (pdf Шаблон:Wayback)
- The RISC-V Instruction Set Шаблон:Wayback // HotChips 25
- RISC-V, Spike, and the Rocket Core Шаблон:Wayback
- David Patterson и Andrew Waterman: «RISC-V reader: An Open Architecture Atlas», Strawberry Canyon, Шаблон:ISBN (Sep. 10th, 2017).
Ссылки
Шаблон:ВС Шаблон:Технологии CPU Шаблон:Микроконтроллеры Шаблон:RISC-based processor architectures
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite news
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Почему RISC-V? Шаблон:Wayback — лекция Станислава Полонского
- ↑ Шаблон:Cite web
- ↑ Launching the Open-Source Rocket Chip Generator! | RISC-V BLOG. Шаблон:Webarchive
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Project aims to build a «fully open» SoC and dev board Шаблон:Wayback, Eric Brown // LinuxGizmos, 14 августа 2014
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite news
- ↑ 23,0 23,1 Шаблон:Cite web
- ↑ 24,0 24,1 Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Western Digital представила процессор SweRV Core для ускорителей по обработке данных / ServerNews Шаблон:Wayback 05.12.2018
- ↑ https://blog.westerndigital.com/risc-v-swerv-core-open-source/ Шаблон:Wayback — https://github.com/westerndigitalcorporation/swerv_eh1 Шаблон:Wayback
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ FADU Introduces SSD Controller and Bravo Series Enterprise SSD Deliver Maximum IOPS/Watt
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web