Русская Википедия:TensorFlow
Шаблон:Карточка программы TensorFlow — открытая программная библиотека для машинного обучения, разработанная компанией Google для решения задач построения и тренировки нейронной сети с целью автоматического нахождения и классификации образов, достигая качества человеческого восприятия[1]. Применяется как для исследований, так и для разработки собственных продуктов Google. Основной API для работы с библиотекой реализован для Python, также существуют реализации для R, C#, C++, Haskell, Java, Go и Swift.
Является продолжением закрытого проекта DistBeliefШаблон:Переход. Изначально TensorFlow была разработана командой Google Brain для внутреннего использования в Google, в 2015 году система была переведена в свободный доступ с открытой лицензией Apache 2.0[2][3].
История
DistBelief
Закрытая система машинного обучения DistBelief разрабатывалась Google Brain для внутренних проектов с 2011 года для работы с нейронными сетями глубокого обучения. Она стала использоваться во многих исследовательских и коммерческих проектах группы фирм холдинга Alphabet[4][5]. После успеха DistBelief, фирма Google решила вывести проект на новый уровень, и для рефакторинга выделила группу из нескольких разработчиков, в которую вошёл Джефф Дин; целью группы было упрощение и оптимизация кодов библиотеки, увеличение надёжности и удобства пользования. Новая библиотека получила название TensorFlow[6]. В 2013 году к проекту присоединился Джеффри Хинтон — учёный, под руководством которого в 2009 году был создан метод обобщённого обратного распространения ошибки и ряд других улучшений, позволившие существенно улучшить точность нейронных сетей (что привело, в частности, к снижению погрешности в распознавании речи на 25 %)[7].
TensorFlow
TensorFlow 9 ноября 2015 года был открыт для свободного доступа. TensorFlow является системой машинного обучения Google Brain второго поколения. В то время как эталонная реализация работает на единичных устройствах, TensorFlow может работать на многих параллельных процессорах, как CPU, так и GPU, опираясь на архитектуру CUDA для поддержки вычислений общего назначения на графических процессорах.[8] TensorFlow доступна для 64-разрядных Linux, macOS, Windows, и для мобильных вычислительных платформ, включая Android и iOS.
Вычисления TensorFlow выражаются в виде потоков данных через граф состояний. Название TensorFlow происходит от операций с многомерными массивами данных, которые также называются «тензорами». В июне 2016 года Джефф Дин из Google отметил, что к TensorFlow обращались 1500 репозиториев на GitHub, и только 5 из них были от Google.[9]
Тензорный процессор
Шаблон:Main В мае 2016 года Google сообщила о применении для задач глубинного обучения аппаратного ускорителя собственной разработки — тензорного процессора (TPU) — специализированной интегральной схемы, адаптированной под задачи для TensorFlow, и обеспечивающей высокую производительность в арифметике пониженной точности (например, для 8-битных процессоров) и направленной скорее на применение моделей, чем на их обучениеШаблон:Нет АИ.
Сообщалось, что после использования TPU в собственных задачах Google по обработке данных удалось добиться на порядок лучших показателей продуктивности на ватт затраченной энергии[10].
TensorFlow 2.0
Поскольку доля рынка TensorFlow среди исследовательских работ сокращалась в пользу PyTorch, команда TensorFlow объявила о выпуске новой основной версии библиотеки в сентябре 2019 года. Изменил схему автоматического дифференцирования со статического вычислительного графа на схему «Определить-запуском», первоначально ставшую популярной благодаря Chainer, а затем PyTorch.[11]
Применение
TensorFlow хорошо подходит для автоматизированной аннотации изображений в таких системах как Шаблон:Нп5[12]. Также с 26 октября 2015 года Google использует систему RankBrain для увеличения релевантности ранжировки поисковой выдачи Google. RankBrain основан на TensorFlow[13].
TensorFlow позволяет проводить обучение генеративно-состязательных сетей (GAN)[14].
Интеграция TensorFlow с Python обеспечивается дистрибутивом Anaconda.
См. также
Примечания
Литература
Ссылка
Шаблон:Вс Шаблон:Программы глубинного обучения Шаблон:Научное программное обеспечение на Python Шаблон:Свободное и открытое программное обеспечение Google
- ↑ «TensorFlow: Open source machine learning» Шаблон:Wayback «It is machine learning software being used for various kinds of perceptual and language understanding tasks» — Jeffrey Dean, отрезок 0:47—2:17Шаблон:Ref-en
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite news
- ↑ Machine Learning: Google I/O 2016 Minute 07:30/44:44 Шаблон:Wayback accessdate=2016-06-05 (англ.
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- Русская Википедия
- Прикладное машинное обучение
- Свободное программное обеспечение, написанное на C++
- Свободное программное обеспечение, написанное на Python
- Применение искусственного интеллекта
- Искусственные нейронные сети
- Анализ данных
- Цифровая обработка изображений
- Машинное обучение
- Библиотеки Python
- Программное обеспечение с лицензией Apache Software License
- Глубокое обучение
- Страницы, где используется шаблон "Навигационная таблица/Телепорт"
- Страницы с телепортом
- Википедия
- Статья из Википедии
- Статья из Русской Википедии