Шаблон:Другие значения
Theorema Egregium (в переводе с латыни «замечательная теорема») — исторически важный результат в дифференциальной геометрии, доказанный Гауссом.
В современной формулировке теорема утверждает следующее:
- Гауссова кривизна является внутренним инвариантом поверхности. Иными словами, гауссова кривизна может быть определена исключительно путём измерения углов, расстояний внутри самой поверхности и не зависит от конкретной её реализации в трёхмерном евклидовом пространстве.
Существует явная формула, выражающая гауссову кривизну через первую квадратичную форму, именно, через её коэффициенты и их частные производные первого и второго порядков.
Это так называемая формула Бриоски[1].
В некоторых частных случаях, например в полугеодезических координатах, то есть в локальных координатах с первой квадратичной формой вида
- <math>du^2 + b(u,v)dv^2</math>
гауссовова кривизна выражается более простой формулой
- <math>K = - \tfrac1b\cdot\tfrac{\partial^2}{\partial u^2}b.</math>
Для вывода теоремы этого достаточно.
Теорема следует из формулы Гаусса — Бонне, если применить её к малым геодезическим треугольникам.
Однако обычно выражение для гауссововой кривизны доказывается до формулы Гаусса — Бонне.
История
Гаусс сформулировал теорему следующим образом (перевод с латыни):
- Таким образом, формула из предыдущей статьи влечёт замечательную теорему.
Если криволинейная поверхность разворачивается по любой другой поверхности, то мера кривизны в каждой точке остается неизменной.
Теорема «замечательна», поскольку авторское определение гауссовой кривизны использует положение поверхности в пространстве.
Поэтому довольно удивительно, что результат никак не зависит от изометричной деформации.
Литература
Примечания
Шаблон:Примечания
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|