Проверка/Оформление/Редактирование: Мякишев Е.А.
Филамент, светящийся в темноте[1]
В этой статье мы узнаем о разных видах светящегося филамента, из чего они сделаны, как печатать с помощью такого материала и для каких проектов его можно использовать.
Выжимка для тех, у кого нет времени (для читателей, которым не хватает времени):
- Что: Светящийся в темноте PLA или ABS
- Для чего: Игрушки, декорации к Хэллоуину и т.д.
- Преимущества:
- Работать с таким материалом – сплошное веселье
- Печать и обращение со светящимися PLA и ABS точно такие же, как и для их стандартных аналогов
- Недостатки:
- Дороже, чем стандартные PLA и ABS
- Эффект свечения у красного, фиолетового и желтого филаментов довольно слабый
- Итого: Светящиеся в темноте ABS и PLA содержат фосфоресцирующие материалы, т.е. материалы, которые светятся в темноте, если перед этим поставить их под источник света. 3D-печать светящимися филаментами ничем не отличается от печати стандартными аналогами. Можно использовать для печати «мерцающего Джека» (тыквенной головы с прорезями, формирующими устрашающее лицо), игрушек, домов с привидениями и т.д. Если хотите, чтобы объект светил максимально ярко, лучше используйте зеленый филамент.
Что такое светящийся в темноте филамент?
По сути, это все тот же стандартный PLA/ABS, к которому был добавлен так называемый «фосфоресцирующий материал». Производители используют, как правило, сульфид цинка, сульфид кальция или алюминат стронция – материалы, которые светятся какое-то время после того, как были подвержены световому воздействию (оно может быть и искусственным, и естественным).
Научным определением этого явления является «фосфоресценция», т.е. процесс, при котором некий объект впитывает энергию, а затем медленно высвобождает ее в форме света. Фосфоресценция – это специфический вид фотолюминесценции. Другими словами, филаменту или напечатанному с его помощью объекту для подзарядки требуется электромагнитная радиация (т.е. свет), однако слова «радиация» бояться совершенно не стоит – этот материал безопасен.
В сущности, пигменты просто поглощают фотоны, идущие от источника света, а затем сами начинают излучать поглощенный свет на протяжении определенного периода времени. Это свечение особенно хорошо наблюдается в темноте, поэтому подобные материалы и называют, как правило, «светящимися в темноте».
Покупка светящегося филамента
В зависимости от материала, который использовался в качестве мастербатча, производитель может добиться, чтобы итоговый филамент был зеленого, синего, красного, розового, желтого или оранжевого цвета. То есть, сейчас ассортимент цветов значительно шире, хотя до недавних пор самым распространенным светящимся филаментом был зеленый ABS. Все эти 3D-печатные материалы доступны в диаметрах 1,75 мм и 3 мм.
Одна из вещей, на которую стоит обратить внимание – это цена. Главное правило: чем дешевле филамент, тем меньше в нем «светящегося» пигмента и тем тусклее будет светиться напечатанный из него объект. Кроме того, судя по отзывам на Amazon, пользователи, за исключением зеленого и синего цветов, недовольны световыми свойствами филамента. Поэтому, если вы хотите добиться максимального свечения, лучше придерживаться зеленого или синего ABS/PLA.
Если вы перед покупкой целой катушки хотите протестировать филамент, я бы посоветовал заглянуть сюда. Здесь предлагают тестовые образцы филамента длиной от 5 до 10 метров, чего вполне достаточно для пары тестовых объектов. Если же вы хотите купить целую катушку, я бы порекомендовал замечательный ColorFabb GlowFill – тесты показали, что светится он довольно долго и ярко.
Светящийся ABS
- Температура экструзии: 210°C - 240°C (при печати с выключенным вентилятором).
- Нужна ли нагревательная платформа: Да.
- Плюсы: Возможность выбрать между разными цветами (зеленым, синим, фиолетовым, красным), простота постобработки (склеивание, шлифование), пригоден для печати прочных и надежных объектов.
- Минусы: Подвержен выгибанию, во время печати источаются газы.
- Условия хранения: Хранить нужно в контейнере или гриппере.
- Цена: 23-40 долларов за килограмм.
Светящийся PLA
- Температура экструзии: 180°C - 220°C.
- Нужна ли нагревательная платформа: Нет.
- Плюсы: Возможность выбрать между разными цветами (зеленым и синим), менее подвержен выгибанию, газов при печати не источается.
- Минусы: Более сложная постобработка, более хрупок (если сравнивать с ABS).
- Условия хранения: Хранить нужно в контейнере или гриппере.
- Цена: 23-40 долларов за килограмм.
Как печатать с помощью светящегося филамента
Работая со светящимся филаментом, представьте, что это все тот же стандартный PLA/ABS. Никаких особых мер предосторожности и инструкций для него не нужно. Я бы порекомендовал начать с ваших обычных настроек для ABS/PLA, а затем подстроить температуры экструдера и платформы, если будет нужно.
Впрочем, есть момент, на который стоит обратить внимание. При свете объекты из светящегося филамента могут выглядеть по-другому, чем в «светящемся» режиме. К примеру, объекты из зеленого светящегося филамента при свете имеют беловатый оттенок (с некоторой прозрачностью), поэтому, если во время печати будут возникать какие-то проблемы, заметить это будет немного трудно.
Совет: Для того чтоб ваш объект светился максимально ярко, я бы рекомендовал отслайсить его таким образом, чтобы у него не было (или почти не было) заполнения, но при этом были дополнительные стенки. Чем толще оболочка объекта, тем ярче он будет светиться в темноте.
Я решил протестировать это, напечатав простой куб – безо всякого наполнения, но с дополнительными стенками. Взгляните на фото ниже. Разница очевидна: куб с четырьмя стенками светится гораздо ярче, чем куб, у которого всего одна стенка.
Эффект от дополнительных стенок становится еще более очевидным спустя несколько минут, когда свечение начинает угасать:
Также мне бы хотелось наглядно показать вам, как долго длится эффект свечения. Для этого я сфотографировал двух динозавров спустя определенные промежутки времени после того, как был выключен свет. Настройки камеры не изменялись. Как видите, эффект свечения наиболее силен лишь в первые несколько минут. Также стоит отметить, что фото, сделанные спустя 5-10 минут после выключения света, плохо демонстрируют оставшийся эффект – даже «угомонившись», объекты еще очень долгое время продолжают излучать пугающе-зловещее свечение.
Что можно напечатать с помощью светящегося филамента
Поскольку я купил целую катушку светящегося ABS, то решил наиграться вдоволь. Особенно впечатляющих результатов можно достичь, если напечатать большой объект и поместить внутри него источник света – такое почти наверняка впечатлит и вашу семью, и друзей.
Дети тоже любят этот материал, особенно если сделать из него каких-нибудь животных, призраков или другие фигурки, и они будут светиться в темноте, пока ребенок будет ложиться спать. Детский спрос есть также и на объекты вроде звездочек – их можно развесить на стенах или подвесить к потолку, и эти друзья сделают пребывание в темноте не таким страшным.
Если интересно, можете взглянуть на нашу галерею объектов, напечатанных с помощью светящегося филамента. Надеемся, они послужат источником вдохновения для ваших собственных творений!
Если интересно, то фигурка динозавра, которую использовали для тестирования светящегося филамента – это Robber Rex от Джима Родда. Скачать ее можно отсюда.
См.также
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|
Внешние ссылки
Телепорт |
---|
Arduino |
Примеры Arduino |
---|
Стандартные функции |
---|
Основы |
|
---|
Цифровой сигнал |
|
---|
Аналоговый сигнал |
|
---|
Связь |
- ReadASCIIString - Анализ строки, состоящей из разделенных запятыми int-значений, и их последующее использование для управления RGB-светодиодом.
- ASCII Table - Демонстрирует продвинутые способы вывода данных на Serial Monitor.
- Dimmer - Изменение яркости светодиода при помощи движения мышкой.
- Graph - Отправка данных на компьютер и их графическое отображение в скетче Processing.
- Physical Pixel - Включение/выключение светодиода путем отправки данных со скетча Processing (или Max/MSP) на Arduino.
- Virtual Color Mixer - Отправка с Arduino на компьютер сразу нескольких значений, а затем их считывание при помощи скетча для Processing или Max/MSP.
- Serial Call Response - Многобайтная передача данных при помощи метода вызова и ответа (метода «рукопожатия»).
- Serial Call Response ASCII - Многобайтная передача данных при помощи метода вызова и ответа (метода «рукопожатия»). До передачи данные зашифровываются в ASCII.
- SerialEvent - Демонстрирует использование SerialEvent().
- Serial input (Switch (case) Statement) - Как совершать различные действия, беря за основу символы, присланные через последовательный порт.
- MIDI - Передача через последовательный порт сообщений с MIDI-нотами.
- MultiSerialMega - Использование двух последовательных портов на Arduino Mega.
|
---|
Управляющие структуры |
- If Statement - Как использовать оператор «if» для создания условий, опирающихся на входные аналоговые данные, при которых светодиод будет либо включаться, либо оставаться выключенным.
- For Loop - Управление несколькими светодиодами, чтобы они мигали, как LED-полоска у автомобиля Китт из сериала «Рыцарь дорог».
- Array - Вариация примера «For Loop», но с использованием массива.
- While Loop - Использование цикла while() для калибровки датчика. Калибровка включается при нажатии на кнопку.
- Switch Case - Как совершать какие-либо действия в зависимости от значений, полученных от датчика. Эквивалент примера «If Statement», но если бы условий было не два, а четыре. Этот пример демонстрирует, как дробить диапазон данных от датчика на четыре «суб-диапазона», а затем в зависимости от полученных результатов совершать одно из четырех действий.
- Switch Case 2 - Второй пример, демонстрирующий использование оператора switch. Показывает, как совершать различные действия в зависимости от определенных символов, полученных через последовательный порт.
|
---|
Датчики |
- ADXL3xx - Считывание данных с акселерометра ADXL3xx.
- Knock - Определение стука при помощи пьезоэлемента.
- Memsic2125 - Считывание данных с 2-осевого акселерометра Memsic2125.
- Ping - Определение объектов при помощи ультразвукового дальномера.
|
---|
Дисплей |
Примеры, объясняющие основы управления дисплеем:
|
---|
Строки |
|
---|
USB (для Leonardo, Micro и Due плат) |
В этой секции имеют место примеры, которые демонстрируют использование библиотек, уникальных для плат Leonardo, Micro и Due.
|
---|
Клавиатура |
- KeyboardMessage - Отправка текстовой строки при нажатии на кнопку.
- KeyboardLogout - Выход из текущей пользовательской сессии при помощи клавиатурных комманд.
- KeyboardSerial - Считывает байт, присланный через последовательный порт, а в ответ отсылает другой байт.
- KeyboardReprogram - Открывает новое окно в среде разработки Arduino, а затем перешивает Leonardo скетчем «Моргание».
|
---|
Мышь |
|
---|
Разное |
---|
|
---|
Espruino |
|
---|
ESP8266 |
ESP8266 AT-команды |
---|
Список AT-команд |
---|
Базовые команды |
- AT - Проверка запуска
- AT+RST - Рестарт
- AT+GMR - Просмотр информации о версиях
- AT+GSLP - Активация режима глубокого сна
- ATE - Активация/деактивация эха
- AT+RESTORE - Сброс к заводским настройкам
- AT+UART Настройка UART [Устарела]
- AT+UART_CUR - Настройка UART в текущей сессии
- AT+UART_DEF - Дефолтная настройка UART (записывается на FLASH)
- AT+SLEEP - Режим сна
|
---|
Команды для WiFi |
- AT+CWMODE - WiFi-режим (клиент / точка доступа / клиент + точка доступа).
- AT+CWMODE_CUR - WiFi-режим (клиент / точка доступа / клиент + точка доступа). Запись на FLASH не идет.
- AT_CWMODE_DEF - WiFi-режим (клиент / точка доступа / клиент + точка доступа). Запись идет на FLASH.
- AT+CWJAP - Подключение к точке доступа.
- AT+CWJAP_CUR - Подключение к точке доступа. Запись на FLASH не идет.
- AT+CWJAP_DEF - Подключение к точке доступа. Запись идет на FLASH.
- AT+CWLAP - Вывод списка доступных точек доступа.
- AT+CWQAP - Отключение от точки доступа
- AT+CWSAP - Настройка параметров для режима точки доступа
- AT+CWSAP_CUR - Настройка параметров для режима точки доступа. На FLASH запись не идет.
- AT+CWSAP_DEF - Настройка параметров для режима точки доступа. Запись идет на FLASH.
- AT+CWLIF - Получение IP-адресов клиентов, подключенных к точке доступа ESP8266.
- AT+CWDHCP - Включение/выключение DHCP. [Эта команда устарела].
- AT+CWDHCP_CUR - Включение/выключение DHCP. На FLASH не записывается.
- AT+CWDHCP_DEF - Включение/выключение DHCP. Сохранение идет на FLASH.
- AT+CWAUTOCONN - Автоматическое подключение к точке доступа при включении ESP8266.
- AT+CIPSTAMAC - Задает MAC-адрес для клиента ESP8266
- AT+CIPSTAMAC_CUR - Задает MAC-адрес для клиента ESP8266. На FLASH запись не идет.
- AT+CIPSTAMAC_DEF - Задает MAC-адрес для клиента ESP8266. Запись идет на FLASH.
- AT+CIPAPMAC - Задает MAC-адрес для точки доступа ESP8266.
- AT+CIPAPMAC_CUR - Задает MAC-адрес для точки доступа ESP8266. Запись на FLASH не идет.
- AT+CIPAPMAC_DEF - Задает MAC-адрес для точки доступа ESP8266. Запись идет на FLASH.
- AT+CIPSTA - Задает IP-адрес клиента ESP8266.
- AT+CIPSTA_CUR - Задает IP-адрес клиента ESP8266. Запись на FLASH не идет.
- AT+CIPSTA_DEF - Задает IP-адрес клиента ESP8266. Запись идет на FLASH.
- AT+CIPAP - Задает IP-адрес точки доступа ESP8266
- AT+CIPAP_CUR - Задает IP-адрес точки доступа ESP8266. На FLASH запись не идет.
- AT+CIPAP_DEF - Задает IP-адрес точки доступа ESP8266. Запись идет на FLASH.
- AT+CWSTARTSMART - Запуск SmartConfig
- AT+CWSTOPSMART - Остановка SmartConfig
|
---|
Команды для TCP/IP |
|
---|
|
---|
Node-RED |
|
---|
Processing |
Справочник языка Processing |
---|
Конструкции языка |
|
---|
Окружение |
|
---|
Данные |
|
---|
Управление |
|
---|
Форма |
|
---|
Ввод |
|
---|
Вывод |
|
---|
Преобразование |
|
---|
Свет, камера |
|
---|
Цвет |
|
---|
Изображение |
|
---|
Рендер |
|
---|
Типография |
|
---|
Математика |
|
---|
Константы |
|
---|
Примеры на Processing |
---|
Основы |
- Структуры и конструкции:
- Фигуры:
- Данные:
- Массивы:
- Управляющие конструкции:
- Работа с изображением:
- Работа с цветом:
- Применение математических функций:
|
---|
Продвинутые графические эффекты |
- Рисование:
- Анимация:
- Графический интерфейс пользователя:
- Движение:
- Взаимодействие:
- Обработка изображения:
- Advanced Data:
- File IO:
- Simulate:
- Vectors:
- Fractals and L-Systems:
- Cellular Automata:
|
---|
Примеры из сторонних библиотек |
|
---|
|
---|
Электроника |
Теория по электронике |
---|
Постоянный ток |
---|
Основные концепты электричества |
• Статическое электричество • Проводники, диэлектрики и поток электронов • Что такое электрические цепи? • Напряжение и электроток • Сопротивление • Напряжение и электроток в реальной цепи • Условный ток и поток электронов |
---|
Закон Ома |
• Закон Ома – Как напряжение, сила тока и сопротивление связаны друг с другом • Аналогия для закона Ома • Мощность в электрических цепях • Расчёт электрической мощности • Резисторы • Нелинейная проводимость • Построение цепи • Полярность перепада напряжения • Компьютерная симуляция электрических цепей |
---|
Правила электробезопасности |
• Важность правил электробезопасности • Воздействие электричества на психологическое состояние • Путь, который ток проходит перед ударом • Закон Ома (снова!) • Техника безопасности • Первая медицинская помощь при ударе током • Распространённые источники опасности • Проектирование электроцепей с учётом требований безопасности • Безопасное использование приборов для измерения электрических показателей • Данные о влиянии удара током на тело человека |
---|
Экспоненциальная запись и метрические приставки |
• Экспоненциальная запись • Арифметические операции для экспоненциальной записи • Метрические обозначения • Преобразование метрических приставок • Используем ручной калькулятор • Экспоненциальная форма в программе SPICE |
---|
Последовательные и параллельные электрические цепи |
• Что такое «последовательные» и «параллельные» электрические цепи • Простая последовательная цепь • Простая параллельная цепь • Электропроводность • Рассчитываем мощность • Правильно используем закон Ома • Анализ отказов компонентов цепи • Строим простые резистивные цепи |
---|
Схемы с делителями напряжения и правила Кирхгофа |
• Схемы с делителем напряжения • Правило напряжений Кирхгофа (ПНК) • Цепи – делители тока и формула делителя тока • Правило Кирхгофа для силы тока (ПКТ) |
---|
Комбинированные последовательно-параллельные схемы |
• Что такое последовательно-параллельная цепь • Методы анализа последовательно-параллельных резисторных цепей • Перерисовываем избыточно усложнённые схемы • Анализ отказов компонентов (продолжение) • Построение простых резисторных цепей |
---|
Измерения в электрических цепях постоянного тока |
• Что такое измеритель? • Как устроен вольтметр • Как вольтметр влияет на измеряемую цепь • Как устроен амперметр • Как амперметр влияет на измеряемую цепь • Как устроен омметр • Высоковольтный омметр • Мультиметры • Кельвиновское 4-проводное измерение сопротивления • Мостовые схемы • Как устроен ваттметр • Как самостоятельно сделать ручной калибратор |
---|
Сигналы электрического оборудования |
• Аналоговые и цифровые сигналы • Системы сигналов напряжения • Системы сигналов силы тока • Тахогенераторы • Теромопары • Измерения pH • Тензодатчики |
---|
Анализ сети постоянного тока |
• Что такое сетевой анализ? • Метод токов ветвей • Аналитический метод контурных токов • Метод узловых потенциалов • Введение в сетевые теоремы • Теорема Миллмана • Теорема о суперпозиции • Теорема Тевенена • Теорема Нортона • Эквивалентность схем Тевенена и Нортона • И вновь о теореме Миллмана • Теорема о передаче максимальной мощности • Δ-Y и Y-Δ преобразования |
---|
Батареи и системы питания |
• Поведение электронов при химических реакциях • Батарейные конструкции • Рейтинг батарей • Батареи специального назначения • Практические рекомендации при использовании батарей |
---|
Физика проводников и диэлектриков |
• Введение в физику проводников и диэлектриков • Размеры проводов• Допустимые токовые нагрузки на провода • Предохранители • Удельное сопротивление • Температурный коэффициент сопротивления • Сверхпроводимость • Пробивное напряжение диэлектрика |
---|
Конденсаторы |
• Электрическое поле и ёмкость • Конденсаторы и дифференциальное исчисление • Факторы, влияющие на ёмкость конденсатора • Последовательное и параллельное соединение конденсаторов • Практические соображения - Конденсаторы |
---|
Магнетизм и электромагнетизм |
• Постоянные магниты • Электромангетизм • Единицы измерения магнитных величин • Магнитная проницаемость и насыщение • Электромагнитная индукция • Взаимная индукция |
---|
Катушки индуктивности |
• Магнитные поля и индуктивность • Катушки индуктивности и дифференциальное исчисление • Факторы, влияющие на индуктивность • Катушки индуктивности в последовательных и параллельных соединениях • Практические соображения – Катушки индуктивности |
---|
Постоянные времени в RC и L/R цепях |
• Переходные процессы в электрических цепях • Переходные процессы в цепях с конденсатором • Переходные процессы в цепях с катушкой индуктивности • Расчёт напряжения и силы тока • Почему L/R, а не LR? • Комплексные расчёты напряжения и тока • Сложные схемы • Расчёт неизвестного времени |
---|
Переменный ток |
---|
Основы теории переменного тока |
• Что такое переменный ток? • Формы волн переменного тока • Измерение величин переменного тока • Расчёт простейшей цепи переменного тока • Фаза переменного тока • Принципы радио |
---|
Комплексные числа |
• Введение в комплексные числа • Векторы и волны переменного тока • Сложение простых векторов • Сложение сложных векторов • Полярная и алгебраическая запись комплексных чисел • Арифметика комплексных чисел • И ещё по поводу полярности переменного тока • Несколько примеров с цепями переменного тока |
---|
Реактанс и импеданс – Индуктивность |
• Резистор в цепи переменного тока (Индуктивность) • Катушка индуктивности в цепи переменного тока • Последовательные резистивно-индуктивные цепи • Параллельные резистивно-индуктивные цепи • Особенности катушек индуктивности • Что такое «скин-эффект»? |
---|
Реактанс и импеданс – Ёмкость |
• Резистор в цепи переменного тока (Ёмкость) • Конденсатор в цепи переменного тока • Последовательные резистивно-ёмкостные цепи • Параллельные резистивно-ёмкостные цепи • Особенности конденсаторов |
---|
Реактанс и импеданс – R/L/C-цепи |
• Обзор R, X и Z (сопротивление, реактанс и импеданс) • Последовательные R/L/C-цепи • Параллельные R/L/C-цепи • Последовательно-параллельные R/L/C-цепи • Реактивная проводимость и адмиттанс • R/L/C-цепи – что в итоге? |
---|
Резонанс |
• Электрический маятник • Простой параллельный резонанс (колебательный контур) • Простой последовательный резонанс • Применение резонанса • Резонанс в последовательно-параллельных цепях • Добротность и полоса пропускания резонансной цепи |
---|
Сигналы переменного тока смешанной частоты |
• Сигналы переменного тока смешанной частоты - Введение • Прямоугольные волновые сигналы • Другие волновые формы • Подробнее о спектральном анализе • Эффекты в электрических цепях |
---|
Фильтры |
• Что такое фильтр? • Низкочастотные фильтры • Высокочастотные фильтры • Полосовые фильтры • Полосно-заграждающие фильтры • Резонансные фильтры • Подводя итоги по фильтрам |
---|
Трансформаторы |
• Взаимная индуктивность и основные операции • Повышающие и понижающие трансформаторы • Электрическая изоляция • Фазировка • Конфигурации обмотки • Регулировка напряжения • Специальные трансформаторы и приложения • Практические соображения – Трансформаторы |
---|
Многофазные цепи переменного тока |
• Однофазные системы питания • Трёхфазные системы питания • Чередование фаз • Устройство многофазного двигателя • Трёхфазные Y- и дельта-конфигурации • Трёхфазные цепи с трансформатором • Гармоники в многофазных энергосистемах • Гармонические фазовые последовательности |
---|
Коэффициент мощности |
• Мощность в резистивных и реактивных цепях переменного тока • Истинная, реактивная и полная мощность • Расчёт коэффициента мощности • Практическая коррекция коэффициента мощности |
---|
Измерение цепей переменного тока |
• Вольтметры и амперметры переменного тока • Измерение частоты и фазы • Измерение мощности • Измерение качества электроэнергии • Мостовые схемы переменного тока • Измерительные преобразователи переменного тока |
---|
Двигатели переменного тока |
• Введение в двигатели переменного тока • Синхронные двигатели • Синхронный конденсатор • Двигатель с магнитным сопротивлением • Шаговые двигатели • Бесщёточный двигатель постоянного тока • Многофазные асинхронные двигатели Теслы • Асинхронные двигатели с фазным ротором • Однофазные асинхронные двигатели • Прочие специализированные двигатели • Сельсин-двигатели (синхронизированные двигатели) • Коллекторные двигатели переменного тока |
---|
Линии передачи |
• Кабель на 50 Ом? • Электрические цепи и скорость света • Характеристический импеданс • Линии передачи конечной длины • «Длинные» и «короткие» линии передачи • Стоячие волны и резонанс • Преобразование импеданса • Волноводы |
---|
Полупроводники |
---|
Усилители и активные устройства |
• От электрики к электронике • Активные и пассивные устройства • Усилители • Коэффициент усиления • Децибелы • Абсолютные дБ-шкалы • Аттенюаторы |
---|
Теория твердотельных приборов |
• Введение в теорию твердотельных устройств • Квантовая физика • Валентность и кристаллическая структура • Зонная теория твёрдых тел • Электроны и «дырки» • P-N-переход • Полупроводниковые диоды • Транзисторы с биполярным переходом • Полевые транзисторы • Полевые транзисторы с изолированным затвором (MOSFET) • Тиристоры • Методы производства полупроводников • Сверхпроводящие устройства • Квантовые устройства • Полупроводниковые приборы в SPICE |
---|
Диоды и выпрямители |
• Диоды и выпрямители – Введение • Проверка диодов мультиметром • Номинальные характеристики диодов • Схемы выпрямителей • Пиковый детектор • Схемы ограничителей напряжения • Схемы фиксаторов уровня • Умножители напряжения (удвоители, утроители, учетверители и т.д.) • Схемы коммутации индуктивных нагрузок • Диодные схемы коммутации • Что такое диод Зенера (стабилитрон)? • Диоды специального назначения • Прочие диодные технологии • Модели диодов в SPICE |
---|
|
---|
|
---|