Русская Википедия:Абсцизовая кислота

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Вещество Абсци́зовая кислота́ (Шаблон:Lang-en, рус. АБК; от англ. abscission – опадение, сбрасывание) — гормон растений, тор­мо­зя­щий их рост и раз­ви­тие. По хи­мической при­ро­де изо­пре­но­ид. Об­на­ру­же­на у всех рас­те­ний (кро­ме пе­чё­ноч­ных мхов); от­сутст­ву­ет у во­до­рос­лей.[1] У печеночников и водорослей было найдено другое вещество — лунуларовая кислота, которая играет сходную роль[2]. АБК можно обнаружить также в организме животных, грибов, бактерий. У растений АБК содержится во всех органах — корнях, стеблях, почках, листьях, плодах, во флоэмном и ксилемном соке, нектаре, но особенно много ее осенью в покоящихся почках, плодах, семенах, клубнях.[3] Присутствует в клетке как в свободной форме, так и в виде конъюгатов с глюкозой.[4]

История

Впервые абсцизовая кислота обнаружена в экспериментах по поиску вещества, которое получило название дормин, или абсцизин, — по способности вызывать опадение листьев и коробочек хлопчатника. Первые препараты абсцизовой кислоты были независимо выделены в 1963 году из листьев берёзы Ф. Эддикоттом и сотрудниками (США) и Ф. Уорингом и сотрудниками (Великобритания).[5]

Биосинтез

У высших растений все клетки, содержащие пластиды, способны к синтезу абсцизовой кислоты.[3] Биосинтез АБК происходит в основном в молодых сосудистых пучках, а также в замыкающих клетках устьиц.[5] Она накапливается в хлоропластах, хотя синтезируется в цитозоле.[3]

По своей химической природе АБК, как и гиббереллины, является терпеноидом; у этих двух групп гормонов-антагонистов есть общий предшественник — геранилгеранил-дифосфат (ГГДФ), который также является предшественником хлорофилла. Из ГГДФ синтезируются каротиноиды, их производным является зеаксантин, который является первым предшественником в пути биосинтеза АБК.[5]

Основные этапы биосинтеза АБК:

  1. Синтез виолоксантина из зеаксантина, который катализируют ферменты зеаксантин-эпоксидазы (ZEP).
  2. Синтез неоксантина из виолоксантина, который катализируют две группы ферментов: неоксантин-синтазы (NSY) и изомеразы, важные для синтеза цис-изомеров виолоксантина и неоксантина.
  3. Синтез ксантоксина из цис-неоксантина, который катализируют 9-цис-эпоксикаротеноид-диоксигеназы (NCED).
  4. Синтез АБК из ксантоксина через АБК-альдегид, две последовательные стадии которого катализируются ксантоксин-дегидрогеназой АВА2 и АБК-альдегидоксидазой ААОЗ.

Первые три этапа биосинтеза АБК, как и синтез каротиноидов, проходят в пластидах, последний — в цитозоле.[5]

Ранняя точка зрения о возможности синтеза АБК из мевалоновой кислоты не подтвердилась и является устаревшей.[6]

Функции

Влияние на процессы покоя

Абсцизовая кислота является основным соединением, переводящим растения и их органы в состояние покоя.[6] С увеличением содержания АБК связан переход в состояние покоя семян, клубней, луковиц и почек, наоборот, выход из покоя и возобновление роста — следствие уменьшения содержания ингибитора.[7] Эффекты АБК противостоят эффектам гормонов-активаторов — ауксина, цитокининов, гиббереллина.[6]

Накопление АБК в семенах или в тканях околоплодника вызывает покой у семян некоторых растений. Когда зародыш семени достигает окончательного размера, синтезируется АБК. Она вызывает синтез крахмала в эндосперме и белков в алейроновом слое. ДНК и РНК образуют комплексы с белками-шаперонами и полиаминами, рост прекращается, и начинается обезвоживание. Зародыш теряет воду, ее количество падает от 95–97 до 14% и ниже.[3]

Адаптация к стрессу

Обычно абсцизовая кислота образуется в ответ на стрессовую ситуацию (высыхание, засоление, низкая температура) и в свою очередь изменяет растение, приспосабливая его к негативным факторам.[8] АБК особенно важна для поддержания водного баланса в условиях засухи; недостаток влаги ведёт к резкой активации синтеза АБК и её выходу из мест депонирования во внутри- и внеклеточное пространство. К числу быстрых эффектов АБК, которые имеют место через несколько минут после повышения её концентрации, относится асимметричный транспорт ионов калия, кальция и анионов через мембрану замыкающих клеток устьиц, в результате чего замедляется поступление воды в клетки, их тургор падает, что приводит к закрытию устьичной щели. Без АБК растение не может закрыть устьица и погибает при малейшей засухе[3]. Одновременно АБК активирует всасывание воды корнями.[5] Показана роль АБК в опадании листьев в засушливые периоды.[3] (По поводу участия АБК в осеннем листопаде мнения ученых расходятся. Многие считают, что в умеренных и северных широтах этот процесс больше зависит не от АБК, а от этилена.[9]) АБК, таким образом, улучшает поступление воды в корни и затрудняет расход воды листьями, что приводит к улучшению водного баланса в условиях засухи[3].

Закрывание устьиц под действием абсцизовой кислоты вызывает уменьшение интенсивности фотосинтеза в 2–4 раза. Кроме того, АБК разобщает окисление и фосфорилирование, т. е. она является антагонистом гиббереллинов и цитокининов. Разобщение окисления и фосфорилирования приводит к уменьшению синтеза АТФ, а следовательно, к уменьшению интенсивности протекания темновой фазы фотосинтеза, что является в конечном счете причиной торможения роста побега. Торможение роста может быть также следствием ингибирования синтеза РНК и уменьшения проницаемости мембран для веществ под влиянием АБК. Одновременно с закрыванием устьиц и при торможении роста побега АБК стимулирует рост корня в длину. Это можно рассматривать как адаптацию к хроническому недостатку воды. Уменьшение транспирирующей поверхности при ускорении роста корня, двигающегося к воде (положительный гидротропизм), помогает сохранению водного гомеостаза в растении. Следствием торможения роста побегов является синтез антоцианов, наблюдаемый при повышении концентрации АБК.[3]

Под дей­ст­ви­ем АБК в рас­те­ни­ях об­ра­зу­ют­ся ве­ще­ст­ва (например, гид­ро­кси­про­лин, по­ли­ами­ны, бел­ки-ос­мо­ти­ны), ко­то­рые проч­но удер­жи­ва­ют во­ду в клет­ках, пре­пят­ст­ву­ют об­ра­зо­ва­нию в них кри­стал­лов льда, что при­да­ёт рас­те­ни­ям ус­той­чи­вость к хо­ло­ду и за­су­хе.[1]

Другие функции

Помимо двух описанных выше основных функций (индуцирование состояния покоя и адаптация к стрессу) абсцизовая кислота регулирует и другие процессы. От концентрации АБК зависит изгибание корней вниз у горизонтально расположенных растений. Она участвует в клубнеобразовании, стимулирует опадание семядолей, листьев у хлопчатника, а также опадание цветков и зрелых плодов у винограда, маслин, цитрусовых и яблок (антиауксиновое действие). АБК стимулирует созревание молодых плодов.[3]

Транспорт

Транспортируется абсцизовая кислота по сосудам и ситовидным трубкам вверх и вниз во все органы. Она может передвигаться и латерально по паренхимным клеткам. На короткие расстояния АБК транспортируется с помощью диффузии от клетки к клетке; выделившаяся в апопласт АБК распределяется с током воды. Экзогенная АБК быстро проникает в ткани и свободно распространяется по растению во всех направлениях.[3]

Инактивация

Существует два типа реакций, приводящих к инактивации АБК, — гидроксилирование и синтез конъюгатов.

С-7-, С-8- и С-9-гидроксилированные формы АБК обладают слабой биологической активностью, кроме того, гидроксилирование по С-8 является первым шагом в образовании конъюгатов АБК с глюкозой.

АБК и её С-8-гидроксилированная форма являются мишенью для образования конъюгатов с глюкозой, наиболее распространённым среди которых является АБК-глюкозильный эфир. Как правило, конъюгаты АБК физиологически неактивны и накапливаются в вакуолях при старении. В то же время АБК-глюкозильный эфир играет роль в дальнем транспорте АБК.[5]

У грибов

Не­ко­то­рые гри­бы, па­ра­зи­ти­рую­щие на рас­те­ни­ях, вы­ра­ба­ты­ва­ют абсцизовую кислоту, ре­гу­ли­руя рос­то­вые про­цес­сы хо­зяи­на.[1]

У животных

Обнаружено, что абсцизовая кислота синтезируется также в организме многих животных — от губок до млекопитающих, включая человека.[10] В настоящее время её биосинтез и физиологическая роль у животных малоизучены[11]. У губок АБК участвует в реакции на температурный стресс, аналогично реакции растений на засуху, с вовлечением аналогичных биохимических механизмов.[12] В частности, одним из посредников действия гормона в клетке губки является фермент АДФ-рибозилциклаза (абсцизовая кислота стимулирует повышение его активности)[13], как и в растительной клетке.[14] У млекопитающих АБК участвует в регуляции иммунного ответа и осуществляет контроль уровня глюкозы в крови[15][16][17].

Лечебный эффект

Абсцизовая кислота у млекопитающих и человека нормализует уровень глюкозы в крови, синтезируясь обычно при повышенных показателях гликемии. Данный эффект наблюдается даже при введении животным низких доз АБК и, как выяснилось, не зависит от повышенного высвобождения инсулина.[18] По этой причине прием АБК в низких дозах может быть предложен для повышения толерантности к глюкозе у пациентов с диабетом, резистентных к инсулину.[19] Предпринята успешная попытка лечить абсцизовой кислотой пациентов с преддиабетом.[20] Абсцизовую кислоту можно также рассматривать как терапевтическую молекулу, предотвращающую нейродегенеративные заболевания.[21][22][23] Абсцизовая кислота, скорее всего, обладает и противораковым действием. Существуют сообщения о том, что АБК улучшает выживаемость мышей, которым были пересажены лейкозные клетки.

Примечания

Шаблон:Примечания

Литература

  • J. Bassaganya-Riera, J. Skoneczka, D. Kingston, A. Krishnan, S. Misyak, et. al.. (2010). Mechanisms of Action and Medicinal Applications of Abscisic Acid. CMC. 17, 467-478; Шаблон:PMID Шаблон:DOI
  • Chen, K., Li, G. J., Bressan, R. A., Song, C. P., Zhu, J. K., & Zhao, Y. (2020). Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 62(1), 25-54. Шаблон:DOI Шаблон:PMID Смотреть список References
  • Magnone, M., Sturla, L., Guida, L., Spinelli, S., Begani, G., Bruzzone, S., ... & Zocchi, E. (2020). Abscisic Acid: A Conserved Hormone in Plants and Humans and a Promising Aid to Combat Prediabetes and the Metabolic Syndrome. Nutrients, 12(6), 1724. Шаблон:PMID Шаблон:PMC Шаблон:DOI
  • Kim, D., & Koo, S. (2020). Concise and Practical Total Synthesis of (+)-Abscisic Acid. ACS Omega. 5(22): 13296–13302 Шаблон:PMC

Ссылки

Шаблон:Вс

  1. 1,0 1,1 1,2 Шаблон:БРЭ
  2. Шаблон:Книга
  3. 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 Шаблон:Книга
  4. Шаблон:Книга
  5. 5,0 5,1 5,2 5,3 5,4 5,5 Шаблон:Книга
  6. 6,0 6,1 6,2 Шаблон:Книга
  7. Шаблон:Книга
  8. Шаблон:Книга
  9. Шаблон:Cite web
  10. Шаблон:Статья
  11. Шаблон:Статья
  12. Шаблон:Статья
  13. Шаблон:Статья
  14. Шаблон:Статья
  15. Шаблон:Статья
  16. Zocchi E, Hontecillas R, Leber A, Einerhand A, Carbo A, Bruzzone S, Tubau-Juni N, Philipson N, Zoccoli-Rodriguez V, Sturla L, Bassaganya-Riera J. (2017). Abscisic acid: a novel nutraceutical for glycemic control. Front Nutr. 4:24–29. Шаблон:Doi Шаблон:PMC Шаблон:PMID
  17. Bruzzone, S., Ameri, P., Briatore, L., Mannino, E., Basile, G., Andraghetti, G., ... & Salis, A. (2012). The plant hormone abscisic acid increases in human plasma after hyperglycemia and stimulates glucose consumption by adipocytes and myoblasts. The FASEB Journal, 26(3), 1251-1260. Шаблон:PMID Шаблон:DOI
  18. Magnone, M., Leoncini, G., Vigliarolo, T., Emionite, L., Sturla, L., Zocchi, E., & Murialdo, G. (2018). Chronic intake of micrograms of Abscisic acid improves glycemia and lipidemia in a human study and in high-glucose fed mice. Nutrients, 10(10), 1495. Шаблон:Doi Шаблон:PMC Шаблон:PMID
  19. Magnone, M., Emionite, L., Guida, L., Vigliarolo, T., Sturla, L., Spinelli, S., ... & Orengo, A. M. (2020). Insulin-independent stimulation of skeletal muscle glucose uptake by low-dose abscisic acid via AMPK activation. Scientific reports, 10(1), 1454. {{doi: 10.1038/s41598-020-58206-0}} Шаблон:PMC Шаблон:PMID
  20. Derosa, G., Maffioli, P., D’Angelo, A., Preti, P. S., Tenore, G., & Novellino, E. (2020). Abscisic Acid Treatment in Patients with Prediabetes. Nutrients, 12(10), 2931. Шаблон:Doi Шаблон:PMC Шаблон:PMID
  21. Ribes-Navarro, A., Atef, M., Sánchez-Sarasúa, S., Beltrán-Bretones, M. T., Olucha-Bordonau, F., & Sánchez-Pérez, A. M. (2019). Abscisic acid supplementation rescues high fat diet-induced alterations in hippocampal inflammation and IRSs expression. Molecular neurobiology, 56(1), 454-464. Шаблон:PMID Шаблон:DOI
  22. Sanchez-Perez, A. M. (2020). Abscisic acid, a promising therapeutic molecule to prevent Alzheimer’s and neurodegenerative diseases. Neural Regeneration Research, 15(6), 1035. Шаблон:PMC
  23. Khorasani, A., Abbasnejad, M., & Esmaeili-Mahani, S. (2019). Phytohormone abscisic acid ameliorates cognitive impairments in streptozotocin-induced rat model of Alzheimer's disease through PPARβ/δ and PKA signaling. International Journal of Neuroscience, 129(11), 1053-1065. Шаблон:PMID Шаблон:DOI