Русская Википедия:Геликон (физика)

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Другие значения

Геликон (Шаблон:Lang-grc, род. падеж. ἕλικος — кольцо, спираль) — низкочастотная электромагнитная волна, которая возникает в некомпенсированной плазме, находящейся во внешнем постоянном магнитном поле.

Из истории открытия

Существование электромагнитных возбуждений геликонного типа в плазме твердых тел было предсказано в 1960 году: в металлах — О. В. Константиновым и В. И. Перелем[1], в полупроводниках — П. Эгреном[2]. Термин «геликон» был введен Эгреном и отражал круговой характер поляризации этой волны. Через год геликоны были экспериментально обнаружены в натрии[3]. В том же году было установлено, что так называемые «свистящие атмосферики» (вистлеры) представляют собой геликонные волны, распространяющиеся в газовой плазме ионосферы Земли.

Режимы существования геликонов

Возможность распространения электромагнитных волн в хорошо проводящих средах в присутствии сильного магнитного поля можно пояснить следующим образом. В отсутствие магнитного поля в среде имеет место скин-эффект: под действием излучения с частотой, меньшей плазменной, возникают токи, которые экранируют электромагнитное возмущение и препятствуют его проникновению вглубь вещества. Магнитное поле ослабляет это экранирование, заставляя носители заряда под действием силы Лоренца двигаться более упорядоченно и мешая им эффективно реагировать на поле электромагнитной волны. Это дает возможность распространения в среде низкочастотных геликонов.

В зависимости от соотношения длины свободного пробега носителей заряда и длины волны электромагнитного возбуждения выделяют «локальный» и «нелокальный» режимы распространения геликонов. Для рассмотрения каждого из этих случаев приходится применять различные теоретические и экспериментальные подходы.

Локальный режим

Условие локальности может быть записано в виде <math>ql<<1</math>, где <math>q</math> — волновое число геликона, <math>l</math> — длина свободного пробега носителей заряда (электронов). Основные особенности геликонных волн могут быть получены в модели свободных электронов. Рассматривая падение на проводящую среду электромагнитной волны частоты <math>\omega</math> в условиях мгновенного равновесия, можно получить дисперсионное соотношение для геликона:

<math>q^2_{\pm}=\omega \mu_0 / \rho (\pm u+i) \cos \phi</math>,

где <math>\mu_0</math> — магнитная проницаемость вакуума, <math>\rho=m / n e^2 \tau</math> — сопротивление, <math>u=R B_0 / \rho=\omega_c \tau</math> — тангенс угла Холла между током и напряженностью электрического поля, <math>B_0</math> — постоянное магнитное поле, <math>\phi</math> — угол между <math>q</math> и <math>B_0</math>. Здесь <math>m</math> — масса электрона, <math>e</math> — его заряд, <math>n</math> — плотность электронов, <math>\tau</math> — характерное время, за которое носители теряют импульс при столкновениях с решеткой; <math>R=1/ne</math> — константа Холла, <math>\omega_c=e B_0 / m</math> — циклотронная частота носителей. Условием распространяющихся волн является неравенство <math>|{\rm Re} q|>>|{\rm Im} q|</math>. В полубесконечном металле геликон, распространяющийся вдоль постоянного магнитного поля, является поперечной циркулярно поляризованной волной, электрическое и магнитное поля которой вращаются вокруг направления распространения в том же направлении, что и электроны.

В общем случае необходимо учитывать тензорный характер параметров среды, в частности сопротивления <math>\rho</math>, а также граничные условия в ситуации пространственно ограниченных структур.

Нелокальный режим

Условием нелокальности является соотношение <math>ql>>1</math>, то есть на длине свободного пробега укладывается много длин волн геликона. Поэтому в данном случае нельзя пренебрегать микроскопическим (циклотронным) движением носителей заряда. С математической точки зрения это приводит к необходимости вычисления нелокального тензора проводимости. Физическую картину в нелокальном случае определяют эффекты бесстолновительного поглощения волны носителями, крайними случаями которого являются доплер-сдвинутый циклотронный резонанс (условие поглощения <math>qV_F/\omega_c>1</math>, где <math>V_F</math> — скорость свободных электронов, равная скорости Ферми) и магнитное затухание Ландау (<math>qV_F/\omega_c<<1</math>). Эти процессы существенно ограничивают диапазон существования распространяющихся геликонных волн.

Эксперименты с геликонами

Методы исследования

К основным методам наблюдения и изучения геликонов относятся:

Результаты исследований

Экспериментальные наблюдения геликонов в локальном режиме позволяют измерить константу Холла, магнетосопротивление, поверхностное поглощение волн при различных геометриях образцов.

Эксперименты в нелокальном режиме в условиях циклотронного поглощения и затухания Ландау позволяют определять поверхностный импеданс образцов, форму поверхности Ферми, оценить роль столкновений в процессах затухания. Отдельным направлением исследований является изучение взаимодействия геликонов с другими типами возбуждения в веществе: со звуком (геликон-фононное взаимодействие, позволяющее осуществлять электромагнитное возбуждение акустических волн), с магнитными моментами ядер (ЯМР-поглощение геликона), со спиновыми волнами в ферромагнетиках (геликон-магнонное взаимодействие).

Обычно геликоны в лабораторных экспериментах получают в плазме твёрдых тел или разрядных трубках с газовой плазмой. В 2015 году американские исследователи сообщили о получении геликонов в неограниченной плазме, вдали от каких-либо поверхностей. Это достижение позволяет изучить в лаборатории возникновение таких волн в ситуации, близкой к условиям, имеющимся в космическом пространстве.[4]

Примечания

Литература