Русская Википедия:Главная последовательность

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Файл:HRDiagram ru.png
Диаграмма Герцшпрунга — Рассела

Главная последовательность — стадия эволюции звёзд, а также область на диаграмме Герцшпрунга — Рассела, образованная звёздами на этой стадии, и соответствующий класс светимости.

На главную последовательность звёзды попадают после стадии протозвезды — когда их единственным источником энергии становятся термоядерные реакции синтеза гелия из водорода, идущие в ядре. В этот момент возраст звезды считается нулевым и она находится на так называемой начальной главной последовательности. По мере исчерпания водорода звезда становится немного ярче, отходит от начальной главной последовательности и, когда в ядре не остаётся водорода, звезда окончательно покидает главную последовательность, причём то, как это происходит, зависит от массы звезды. Однако в любом случае дальнейшие стадии эволюции длятся гораздо меньше, чем стадия главной последовательности, и, как следствие, абсолютное большинство звёзд во Вселенной, включая Солнце, принадлежит главной последовательности. Планетные системы звёзд главной последовательности с небольшой массой представляют интерес при поиске обитаемых планет — ввиду длительного существования и стабильных размеров зоны обитаемости.

Главная последовательность была впервые обнаружена и описана в начале XX века в нескольких независимых работах, в которых строилась диаграмма спектр — светимость. В середине XX века была выяснена природа и эволюция звёзд главной последовательности.

На диаграмме Герцшпрунга — Рассела главная последовательность проходит по диагонали: из верхнего левого угла (высокие светимости, синий цвет) в правый нижний угол (низкие светимости, красный цвет). Таким образом, значения масс, размеров, температур и светимостей звёзд главной последовательности тесно связаны друг с другом и лежат в довольно широком диапазоне.

Свойства

Основные свойства

Светимости, радиусы и температуры звёзд главной последовательности варьируют в довольно широком диапазоне: встречаются светимости от Шаблон:E до Шаблон:E Шаблон:Loабсолютные звёздные величины от −6m до +16m[1]), радиусы — от 0,1 до более чем 10 Шаблон:Ro, температуры — от 3 до 50 тысяч KШаблон:Sfn[2]. Тем не менее, эти величины тесно связаны, в результате чего звёзды главной последовательности на диаграмме Герцшпрунга — Рассела занимают практически диагональную полосу, проходящую от ярких голубых звёзд к тусклым краснымШаблон:Sfn. Звёзды главной последовательности имеют класс светимости VШаблон:Sfn. 90 % всех звёзд, в том числе и Солнце, принадлежит главной последовательности, что обусловлено большой длительностью этой стадии эволюции (см. нижеШаблон:Переход)Шаблон:Sfn.

Вышеперечисленные параметры определяются в первую очередь массой звезды. На них влияют и другие свойства звезды, но в гораздо меньшей степени, чем масса (см. нижеШаблон:Переход)Шаблон:Sfn. Если считать звезду абсолютно чёрным телом, то её светимость <math>L</math> пропорциональна квадрату радиуса <math>R</math> и четвёртой степени эффективной температуры <math>T</math> по закону Стефана — БольцманаШаблон:Sfn:

<math>L = 4 \pi R^{2} \sigma T^{4},</math>

где <math>\sigma</math> — постоянная Стефана — Больцмана. Этот закон применим ко всем звёздам, а не только к звёздам главной последовательности. Для звёзд главной последовательности масса и светимость связаны одноимённым соотношением: теоретически его можно оценить как <math>L \propto M^\alpha</math>, где <math>\alpha = 3</math>, однако для реальных звёзд <math>\alpha</math> может принимать значения от 1 до 5 в разных диапазонах массШаблон:Sfn. Связь массы и радиуса звезды часто описывается похожим соотношением — <math>R \propto M^\beta</math>, где <math>\beta</math> принимает значения не более 1 в разных диапазонах масс[3], но иногда это соотношение приближают более сложными функциями[4].

В любом случае выходит, что все четыре параметра оказываются тесно связанными. Теоретические ограничения на массу ограничивают диапазон остальных параметров звёзд. Максимальная масса устойчивых звёзд составляет около 120 Шаблон:Mo. Хотя известны более массивные звёзды, они оказываются неустойчивыми, пульсируют и теряют массу, выбрасывая вещество в открытый космос, пока не становятся устойчивыми[5]. Нижний предел массы — около 0,08 Шаблон:Mo: при меньшей массе звезда неспособна поддерживать горение водорода в своих недрах и является коричневым карликом, а не звездойШаблон:Sfn.

Параметры звёзд главной последовательностиШаблон:Sfn[2]
Масса, Шаблон:Mo Светимость, Шаблон:Lo Радиус, Шаблон:Ro Температура, K Спектральный класс Примеры
120 1,8Шаблон:E 15,8 53300 O3
85 1,0Шаблон:E 13,2 50700 O3
60 530000 10,6 48200 O4
40 240000 8,6 43700 O5
25 79000 6,6 38000 O7
20 45000 5,8 35000 O8
15 20000 4,9 31000 B0 Бекрукс
12 10000 4,3 28100 B1
9 4100 3,7 24200 B2 Спика
7 1800 3,3 20900 B3
5 550 2,7 17200 B4
4 240 2,4 14900 B5 Ахернар
3 81 2,0 12200 B7 Регул
2,5 39 1,84 10700 B9 Сириус
2 16 1,64 9080 A2 Фомальгаут
1,7 8,0 1,52 7960 A7 Альтаир
1,35 4,0 1,2 6400 F5 Процион
1,08 1,45 1,05 5900 G0 Альфа Центавра A
1 1 1 5800 G2 Солнце
0,95 0,7 0,91 5600 G5 Мю Кассиопеи
0,85 0,44 0,87 5300 G8 Тау Кита
0,83 0,36 0,83 5100 K0
0,78 0,28 0,79 4830 K2 Эпсилон Эридана
0,68 0,18 0,74 4370 K5 Альфа Центавра B
0,33 0,03 0,36 3400 M2 Лаланд 21185
0,20 0,0005 0,21 3200 M4 Росс 128
0,10 0,0002 0,12 3000 M6 Вольф 359

При формировании звёзды главной последовательности однородны и состоят в основном из водорода (около 91 % по количеству частиц, 75 % по массе) и гелия (около 9 % по числу частиц, 25 % по массе) — их состав близок к составу межзвёздной среды[6]Шаблон:SfnШаблон:Sfn. Также эти звёзды содержат небольшое количество более тяжёлых элементов[7]. Со временем доля гелия в центре возрастает вследствие идущих термоядерных реакцийШаблон:Sfn.

Звёзды главной последовательности принято называть «карликами» вне зависимости от их размера[8] — например, Солнце является жёлтым карликом. Тем не менее, отличие от звёзд-гигантов по светимости прослеживается только для звёзд поздних спектральных классов. Звёзды главной последовательности классов O, B, A и F на диаграмме Герцшпрунга — Рассела располагаются практически там же, где и гиганты этих спектральных классов[1][9]. Кроме того, не все звёзды, называемые карликами, относятся к главной последовательности: к примеру, белые карлики или коричневые карлики не являются звёздами главной последовательности[10].

Вариации температур и светимостей

При сгорании водорода в ядре звёзд образуется гелий, с которым в период, пока звезда находится на стадии главной последовательности, не проходят никакие термоядерные реакции. Водорода в ядре остаётся меньше, из-за чего звезда вынуждена постепенно сжиматься, чтобы компенсировать падение темпа реакций. Это увеличивает давление в ядре, и, следовательно, мощность энерговыделения и светимость звездыШаблон:Sfn. Таким образом, звезда меняет своё положение на диаграмме Герцшпрунга — Рассела ещё тогда, когда находится на главной последовательности, до схода с неё[11]. Например, 4,5 миллиарда лет назад Солнце, уже будучи звездой главной последовательности, имело светимость около 70 % от современной[12].

Другие явления, такие, как быстрое вращение также могут повлиять на смещение звезды относительно главной последовательности[13]. На светимость и температуру поверхности также влияет металличность звезды. Выделяют отдельный класс звёзд, называемый субкарликами: они выделяют энергию за счёт горения водорода в ядре, но это старые звёзды, бедные тяжёлыми элементами. Из-за этого субкарлики имеют звёздные величины на 1—2m слабее, чем звёзды главной последовательности тех же спектральных классов[14]. Наконец, среди звёзд главной последовательности существуют переменные звёзды, например, переменные типа Дельты Щита, которые, в силу переменности, с некоторым периодом меняют своё положение на диаграмме[15]. Все эти обстоятельства обеспечивают звёздам главной последовательности некоторый разброс на диаграмме цвет — светимость, особенно в области ранних спектральных классов[11].

Строение

Файл:Heat Transfer in Stars-ru.svg
Строение звёзд главной последовательности различных масс

Шаблон:Основная статья Ядро является наиболее плотной и горячей частью звезды, в которой происходят ядерные реакции и выделяется энергия (см. нижеШаблон:Переход)Шаблон:Sfn. Энергия из ядра может переноситься к поверхности двумя основными способами: конвекцией — перемешиванием вещества, и лучистым переносом — последовательным поглощением и переизлучением фотонов. Конвекция появляется только в том случае, если лучистый перенос неспособен быстро переносить энергию и в какой-то области звезды образуется достаточно большой градиент температуры, что делает её неустойчивой к конвекцииШаблон:Sfn[16].

У звёзд больших масс энерговыделение сильно сосредоточено к центру: например, в звезде массой 10 Шаблон:Mo 90 % энергии выделяется во внутренних 10 % массы звезды, а в звезде массой 1 Шаблон:Mo такая же доля энергии выделяется во внутренних 70 % массыШаблон:Sfn. Поэтому в ядре градиент температуры достаточно велик и у звёзд с массами более 1,5 Шаблон:Mo ядро конвективно, а внешние слои являются областью лучистого переноса. При уменьшении массы размер конвективного ядра становится меньше и появляется конвективная зона у поверхности звезды, так как из-за более низкой температуры внешние слои становятся непрозрачными и уменьшают эффективность лучистого переноса. При массе звезды менее 1,15 Шаблон:Mo конвективное ядро полностью исчезает. Таким образом, в диапазоне масс 1,15—1,5 Шаблон:Mo звезда имеет две небольших конвективных зоны — в ядре и у поверхности, в то время как остальные части звезды устойчивы к конвекции. При дальнейшем уменьшении массы звезды конвективная зона у поверхности увеличивается, и для звёзд массой менее 0,2—0,5 Шаблон:Mo она распространяется на весь объём звездыШаблон:SfnШаблон:Sfn — маломассивные звёзды являются полностью конвективными[16][17].

Структура звезды влияет на её эволюцию (см. нижеШаблон:Переход): например, маломассивные звёзды полностью конвективны, поэтому гелий, вырабатываемый в ядрах таких звёзд, переносится по всему их объёму. Они остаются химически однородными и продолжают термоядерный синтез до тех пор, пока весь водород в звезде не будет исчерпан. Напротив, у более массивных звёзд в определённый момент образуется гелиевое ядро, и реакции в центре прекращаютсяШаблон:Sfn. Структура звезды может меняться со временем: по мере накопления гелия прозрачность вещества увеличивается, что может приводить к остановке конвекции в ядрах маломассивных звёзд[18].

Энерговыделение

Файл:Nuclear energy generation.svg
Зависимость мощности энерговыделения (ε) от температуры (T) для p-p цикла, CNO-цикла и тройного альфа-процесса в логарифмическом масштабе

Шаблон:Основная статья Звёзды главной последовательности выделяют энергию с помощью термоядерных реакций: все они синтезируют гелий из водорода. Существует два пути синтеза гелия: протон-протонный цикл и CNO-цикл. Первый доминирует у звёзд массой менее 1,5 Шаблон:Mo, второй же вносит основной вклад в светимость более массивных звёздШаблон:Sfn.

При увеличении массы звезды увеличивается температура и плотность в её ядре, а от этих параметров, в свою очередь, зависит частота термоядерных реакций, и, следовательно, мощность энерговыделения. Для протон-протонного цикла мощность пропорциональна 4-й степени температуры в ядре, а для CNO-цикла — 17-й, поэтому при высоких температурах CNO-цикл начинает играть главную роль[16][19].

Диапазон температур в центрах звёзд довольно невелик: например, для звезды с массой 0,1 Шаблон:Mo температура в ядре составляет 4 миллиона кельвинов, а для звезды с массой 50 Шаблон:Mo — 40 миллионов. Эффективность протон-протонного цикла и CNO-цикла сравнивается при температуре 18 миллионов кельвинов (которая как раз достигается в звёздах с массой 1,5 Шаблон:Mo), у Солнца с центральной температурой в 16 миллионов кельвинов только 10% энергии выделяется в CNO-цикле[16][19]Шаблон:Sfn.

У звёзд с очень низкой металличностью нуклеосинтез идёт по-другому. Одна из особенностей CNO-цикла состоит в том, что для его хода необходимо наличие углерода, азота и кислорода в веществе звезды. Если этих элементов недостаточно — менее Шаблон:EШаблон:E массы звезды, то CNO-цикл проходить не может, и единственным источником энергии остаётся протон-протонный цикл. Чтобы с его помощью выделять достаточно энергии для сохранения гидростатического равновесия, ядро звезды вынуждено сжиматься и нагреваться гораздо сильнее, чем для звезды с нормальной металличностью. В этом случае температура в центре массивных звёзд может достигать 100 миллионов кельвинов, чего уже достаточно для прохождения тройного альфа-процесса с участием гелия. В этой реакции вырабатывается углерод, и, когда его становится достаточно много, энергия начинает выделяться за счёт CNO-цикла, а температура и давление в ядре звезды понижаются до значений, наблюдаемых у нормальных звёзд. Считается, что описанный сценарий реализовывался у звёзд гипотетического населения III: они должны были сформироваться из вещества, образованного при первичном нуклеосинтезе, которое практически не содержало элементов тяжелее гелияШаблон:Sfn.

Эволюция

Шаблон:Основная статья

Переход на главную последовательность

Звёзды попадают на стадию главную последовательность после стадии протозвезды, во время которой звезда выделяет энергию за счёт собственного сжатия, но в его конце в ядре звёзды начинается термоядерный синтез. Первоначально сгорают литий и бериллий, после чего начинается синтез гелия из водорода, который какое-то время сопровождается сгоранием дейтерия и гелия-3. Когда мощность этих реакций сравнивается со светимостью звезды, она прекращает сжиматься. Вскоре после этого достигается равновесие между расходом и выработкой дейтерия и гелия-3, а единственным источником энергии звезды становятся термоядерные реакции с участием водорода. Принято считать, что в этот момент звезда попадает на главную последовательность и отсчитывать от него возраст звезды. Область диаграммы Герцшпрунга — Рассела, где располагаются звёзды нулевого возраста, называется начальной главной последовательностью или главной последовательностью нулевого возраста. Она расположена в нижней части главной последовательности — со временем звёзды становятся ярчеШаблон:Sfn[20]Шаблон:Sfn.

Эволюция на главной последовательности

При сгорании водорода в ядре звезды накапливается гелий — в зависимости от массы звезды и расположения конвективной зоны он может как равномерно распределяться по всему объёму звезды, так и оставаться внутри ядра. В любом случае, пока звезда находится на главной последовательности, реакции с участием гелия не идут, а концентрация водорода падает. Чтобы компенсировать падение темпа реакций, ядро звезды сжимается и нагревается, что в итоге приводит к увеличению светимости. Повышение светимости сочетается с уменьшением температуры поверхности для массивных звёзд и её ростом для маломассивных — звезда отходит от начальной главной последовательностиШаблон:Sfn.

Так, например, за время пребывания на главной последовательности Солнце увеличит свою светимость более чем в 3 раза: 4,5 миллиарда лет назад Солнце находилось на начальной главной последовательности и имело светимость 0,7 Шаблон:Lo, а через 6,4 миллиарда лет, когда водород в ядре будет исчерпан, оно сойдёт с главной последовательности, имея светимость 2,2 Шаблон:Lo. Радиус Солнца за время этой стадии увеличится от 0,9 до 1,6 Шаблон:Ro[12].

Сход с главной последовательности

Хотя у всех звёзд главной последовательности накапливается гелий, что в определённый момент приводит к прекращению реакций в ядре, звёзды разной массой завершают эту стадию эволюции по-разномуШаблон:SfnШаблон:Sfn.

Звёзды с массами более 1,2—1,3 Шаблон:Mo имеют конвективное ядро достаточных размеров, чтобы в его границах проходили все термоядерные реакции. Ядра таких звёзд химически однородны, и, как следствие, когда доля водорода в ядре падает ниже некоторого предела, реакции прекращаются сразу во всём ядре. Начинается общее сжатие, за счёт которого звезда излучает, при этом она нагревается и становится немного ярче — на диаграмме Герцшпрунга — Рассела звезда движется вверх и влево, описывая так называемый крюк (Шаблон:Lang-en)[21]. Благодаря сжатию слои вокруг гелиевого ядра становятся достаточно горячими и плотными, чтобы там началось горение водорода. Сжатие прекращается, а звезда сходит с главной последовательности и становится субгигантомШаблон:SfnШаблон:SfnШаблон:Sfn.

У менее массивных звёзд, с массами менее 1,2—1,3 Шаблон:Mo, но более 0,2 Шаблон:Mo, конвективное ядро имеет либо слишком малый размер, либо отсутствует, а источники энергии в гораздо меньшей степени сосредоточены в центре. В результате в различных областях звезды водород расходуется с разной скоростью, а звезда оказывается химически неоднородна. В самом центре звезды водород исчерпывается в первую очередь, но в других областях его горение продолжается, поэтому общего сжатия не происходит. В первое время образование гелиевого ядра не влияет на наблюдаемую эволюцию звезды и она не сходит с главной последовательности. Лишь когда ядро становится достаточно массивным и начинает сжиматься, а внешние слои — расширяться и охлаждаться, считается, что звезда переходит на ветвь субгигантов[12]Шаблон:SfnШаблон:Sfn.

Звёзды наименьшей массы — менее 0,2 Шаблон:Mo, полностью конвективны и остаются химически однородными на протяжении практически всей своей эволюцииШаблон:SfnШаблон:Sfn. По мере накопления гелия такие звёзды — красные карлики — становятся ярче и горячее и превращаются в голубые карлики, а затем, когда водород во всей звезде исчерпывается — в белые карлики. Однако из-за очень большого срока жизни таких звёзд, который должен превышать возраст Вселенной (см. нижеШаблон:Переход), заметно проэволюционировавшие звёзды малых масс не наблюдаются — имеются лишь теоретические расчёты эволюции таких звёзд[18][22]Шаблон:Sfn.

Длительность стадии главной последовательности

Файл:Open cluster HR diagram ages.gif
Диаграмма Герцшпрунга — Рассела для двух рассеянных звёздных скоплений: M 67 и NGC 188, позволяющая определить их возраст
Файл:StarsLifetime2Mass-ru.svg
Приближённая зависимость времени пребывания звезды на главной последовательности от её массы

Срок нахождения звезды на главной последовательности определяется количеством энергии, которое звезда может получить, сжигая водород в ядре, и её светимостью. При делении одной величины на другую получается время, называемое ядерной временной шкалой. Например, если Солнце сможет сжечь в ядре около 10 % своей массы, а при превращении водорода в гелий только 0,7 % массы вещества переходит в энергию, то ядерная временная шкала для Солнца <math>t_\odot</math> может быть оценена какШаблон:Sfn:

<math>t_\odot \approx \frac{0.007 \cdot 0.1 M_\odot c^2}{L_\odot},</math>

где <math>M_\odot</math> — масса Солнца, <math>L_\odot</math> — солнечная светимость, <math>c</math> — скорость света. Величина <math>t_\odot</math> получается равной порядка Шаблон:E лет. Из таких же соображений ядерную временную шкалу <math>t</math> можно оценить и для других звёздШаблон:Sfn:

<math>t \approx t_\odot \frac{M}{M_\odot} \frac{L_\odot}{L},</math>

где <math>M, L</math> — соответственно масса и светимость выбранной звезды. Для звёзд главной последовательности светимость возрастает быстрее массы, поэтому, чем больше масса звезды, тем меньше её срок её нахождения на этой стадии. Если грубо принять соотношение масса — светимость за <math>L \propto M^4</math> для большинства звёзд, то время жизни будет зависеть от массы как <math>t \propto M^{-3}</math>. Для наиболее массивных звёзд соотношение приближается к <math>L \propto M</math>, поэтому для них срок жизни перестаёт уменьшаться с ростом массы и приходит к значению порядка нескольких миллионов лет, что очень мало по астрономическим меркамШаблон:SfnШаблон:Sfn. Напротив, самые маломассивные звёзды могут находиться на главной последовательности до десятков триллионов лет. Такой большой срок, превышающий нынешний возраст Вселенной, достигается не только благодаря низкой светимости, но и по той причине, что самые маломассивные звёзды полностью конвективны и тратят в ядерных реакциях весь водород, который имеют[18][22]Шаблон:Sfn.

Эта особенность позволяет определять возраст звёздных скоплений с учётом того, что звёзды в них образовались практически одновременно. На диаграмме Герцшпрунга — Рассела для скопления главная последовательность ограничена слева и переходит в ветвь субгигантов: самые массивные звёзды уже сошли с главной последовательности, а те звёзды, срок жизни которых совпадает с возрастом скопления, должны переходить на ветвь субгигантов и находиться на точке поворота. Чем более тусклыми и красными являются звёзды на точке поворота, тем меньше их масса и тем больше возраст скопленияШаблон:SfnШаблон:Sfn.

Стадия главной последовательности также является самой длительной стадией эволюции звёзд, поэтому 90 % звёзд принадлежит именно главной последовательностиШаблон:SfnШаблон:Sfn. Это вызвано тем, что на последующих стадиях звёзды имеют значительно большую светимость и быстрее расходуют энергию. Кроме того, горение водорода обеспечивает большее энерговыделение на единицу массы, чем другие термоядерные реакции, а сам водород — наиболее распространённый элемент во Вселенной[23]. Так, например, для Солнца с начала его формирования до превращения в белый карлик пройдёт 12,4 миллиарда лет, из которых на главной последовательности оно проведёт 10,9 миллиардов лет[12]. При этом параметры звёзд во время стадии главной последовательности меняются слабее, чем на других стадиях, поэтому на диаграмме Герцшпрунга — Рассела главная последовательность оказывается не только самой многочисленной, но и очень плотно заселённой областьюШаблон:Sfn.

По вышеперечисленным причинам звёзды главной последовательности небольших масс представляют интерес при поиске потенциально обитаемых планет и внеземной жизни. Благодаря малой скорости изменения светимости, размер зоны обитаемости вокруг звезды также меняется медленно, поэтому у жизни оказывается достаточно времени для появления и развития. Звёзды главной последовательности, более массивные, чем Солнце, эволюционируют быстрее и дают планетам меньше времени для развития на них жизни. У наименее массивных звёзд наличие жизнепригодных планет также маловероятно: зона обитаемости располагается очень близко к ним, поэтому планеты с высокой вероятностью оказываются приливно синхронизированными и подвергаются сильному воздействию звёздного ветра. По этим причинам наиболее предпочтительными для возникновения жизни считаются жёлтые и оранжевые карлики[24]Шаблон:Sfn.

История изучения

Предпосылкой к обнаружению главной последовательности стало построение диаграммы «цвет — абсолютная звёздная величина» для некоторых звёзд. Впервые их использовали в своих работах независимо друг от друга Эйнар Герцшпрунг и Генри Расселл в 1905—1913 годах, благодаря чему такие диаграммы и подобные им стали называть диаграммами Герцшпрунга — Рассела. Оба учёных ожидали увидеть приблизительно равномерное распределение звёзд на диаграмме, но обнаружили, что большинство звёзд располагается вдоль диагональной полосы, которая и была названа главной последовательностьюШаблон:SfnШаблон:Sfn. Герцшпрунг также заметил, что звёзды поздних спектральных классов бывают либо гораздо ярче, либо гораздо тусклее, чем Солнце, и ввёл термины «гиганты» и «карлики» применительно к звёздам[9].

В 1943 году Уильям Морган, Филипп Кинан и Шаблон:Не переведено 3 улучшили систему спектральной классификации, добавив в неё класс светимости. Усовершенствованная система получила название Йеркской системы, звёзды главной последовательности получили в ней класс светимости V. Принадлежность звезды к классу светимости стало возможно определять не только на основании светимости, но и по виду спектра, в частности, по ширине спектральных линий[25]Шаблон:SfnШаблон:Sfn.

Вместе с тем развивались представления о физических свойствах звёзд и их эволюции. В конце XIX века считалось, что все звёзды излучают за счёт гравитационного сжатия, но такая гипотеза была отвергнута, поскольку она не могла объяснить тот факт, что Солнце существует уже миллиарды лет. В начале XX века Артур Эддингтон выдвинул гипотезу, что звёзды излучают благодаря превращению водорода в гелий с потерей массы, а в 1930-х годах были открыты протон-протонный цикл и CNO-цикл, посредством которых такое превращение возможно[26].

Хотя долгое время существовало представление о том, что звёзды главной последовательности и гиганты являются разными стадиями эволюции, направление эволюции не было точно известно. В 1954 году Аллан Сендидж выяснил, что звёзды становятся гигантами после стадии главной последовательности, а не наоборот. Кроме того, он обнаружил, что звёзды главной последовательности в основном эволюционируют перпендикулярно ей, а не вдоль. Таким образом, представление о главной последовательности уже приблизилось к современным[26].

На данный момент уже разработаны подробные модели эволюции, учитывающие множество эффектов, например, вращение звезды и потеря ей массы. Большое внимание в таких моделях уделяется стадии главной последовательности[27][28]. Исследования с помощью современных телескопов, таких как Gaia, предоставляют большие объёмы информации о звёздах, в том числе и о звёздах главной последовательности, что позволяет точно определять их свойства[29].

Примечания

Шаблон:Примечания

Литература

Ссылки

Шаблон:ВС Шаблон:Звёзды Шаблон:Спектральная классификация звёзд Шаблон:Избранная статья