Русская Википедия:Кривошипно-шатунный механизм

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Файл:Cshaft.gif
Кривошипно-шатунный механизм

Кривошипно-шатунный механизм (КШМ) предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение (например, во вращательное движение коленчатого вала в двигателях внутреннего сгорания), и наоборот. Детали КШМ делят на две группы, это подвижные и неподвижные детали:

Принцип действия

Прямая схема: Поршень под действием давления газов совершает поступательное движение в сторону коленчатого вала. С помощью кинематических пар «поршень-шатун» и «шатун-вал» поступательное движение поршня преобразуется во вращательное движение коленчатого вала. Коленчатый вал состоит из:

  • шатунных шеек
  • коренных шеек
  • противовеса

Обратная схема: Коленчатый вал под действием приложенного внешнего крутящего момента совершает вращательное движение, которое через кинематическую цепь «вал-шатун-поршень» преобразуется в поступательное движение поршня.

Типы и виды КШМ

  • Центральный КШМ, у которого ось цилиндра пересекается с осью коленчатого вала.
  • Смещенный КШМ, у которого ось цилиндра смещена относительно оси коленчатого вала на величину;
  • V-образный КШМ (в том числе с прицепным шатуном), у которого два шатуна, работающие на левый и правый цилиндры, размещены на одном кривошипе коленчатого вала.

По соотношению хода и диаметра поршня различают:

  • короткоходные[1](S/D<1) КШМ;
  • длинноходные (длинноходовые) (S/D>1) КШМ.

В автомобильных высокооборотистых ДВС преобладает короткоходная схема.

По наличию бокового усилия на гильзе КШМ бывает:

История

В природе

Задние конечности кузнечиков представляют собой кривошипно-шатунный механизм с неполным оборотом.
Бедро и голень человека и роботов-андроидов тоже представляют собой кривошипно-шатунный механизм с неполным оборотом.

В Римской империи

Файл:Römische Sägemühle.svg
Римская пилорама из Иераполиса из 3-го столетия н. э., наиболее ранняя известная машина с соединением кривошипа и шатуна.[4]

Самые ранние свидетельства появления на машине рукоятки в сочетании с шатуном относятся к пилораме из Иераполиса, 3-й век нашей эры, римский период, а также византийским камнережущим пилорамам в Герасе, Сирии и Эфесе, Малая Азия (6-й век нашей эры).[4] Ещё одна такая пилорама возможно существовала во 2 веке н. э. в римском городе Августа-Раурика (современная Швейцария), где был найден металлический кривошип.[5]

Уравнения движения поршня (для центрального КШМ)

Файл:Piston motion geometry.png
Диаграмма показывающая геометрическое положение шатуннопоршневой оси — P, кривошипношатунной оси — N и центра кривошипа — O

Определения

l — длина шатуна (расстояние между шатуннопоршневой осью и кривошипношатунной осью)
r — радиус кривошипа (расстояние между кривошипношатунной осью и центром кривошипа, то есть половина хода поршня
A — угол поворота кривошипа (от «верхней мёртвой точки» до «нижней мёртвой точки»)
x — положение шатуннопоршневой оси (от центра кривошипа вдоль оси цилиндра)
v — скорость шатуннопоршневой оси (от центра кривошипа вдоль оси цилиндра)
a — ускорение шатуннопоршневой оси (от центра кривошипа вдоль оси цилиндра)
ω — угловая скорость кривошипа в радианах в секунду (рад/сек)

Угловая скорость

Угловая скорость кривошипа в оборотах в минуту (RPM):

<math>\omega= \frac{2\pi\cdot \mathrm{RPM}}{60} </math>

Отношения в треугольнике

Как показано в диаграмме, центр кривошипа, кривошипношатунная ось и шатуннопоршневая ось образуют треугольник NOP.
Из теоремы косинусов следует, что:

<math> l^2 = r^2 + x^2 - 2\cdot r\cdot x\cdot\cos A </math>

Уравнения по отношению к угловому положению кривошипа (для центрального КШМ)

Уравнения, которые описывают циклическое движение поршня по отношению к углу поворота кривошипа.
Примеры графиков этих уравнений показаны ниже.

Положение

Положение относительно угла кривошипа (преобразованием отношений в треугольнике):

<math> l^2 - r^2 = x^2 - 2\cdot r\cdot x\cdot\cos A </math>
<math> l^2 - r^2 = x^2 - 2\cdot r\cdot x\cdot\cos A + r^2[(\cos^2 A + \sin^2 A) - 1]</math>
<math> l^2 - r^2 + r^2 - r^2\sin^2 A = x^2 - 2\cdot r\cdot x\cdot\cos A + r^2 \cos^2 A</math>
<math> l^2 - r^2\sin^2 A = (x - r \cdot \cos A)^2</math>
<math> x - r \cdot \cos A = \sqrt{l^2 - r^2\sin^2 A}</math>
<math> x = r\cos A + \sqrt{l^2 - (r\sin A)^2} </math>

Скорость

Скорость по отношению к углу поворота кривошипа (первая производная взята, используя правило дифференцирования сложной функции):

<math>

\begin{array}{lcl}

x' & = & \frac{dx}{dA}     \\
   & = & -r\sin A + \frac{\left(\frac{1}{2}\right)\cdot(-2)\cdot r^2 \sin A \cos A}{\sqrt{l^2-r^2\sin^2 A}} \\
   & = & -r\sin A - \frac{r^2\sin A \cos A}{\sqrt{l^2-r^2\sin^2 A}}  

\end{array} </math>

Ускорение

Ускорение относительно угла кривошипа (вторая производная взята, используя правило дифференцирования сложной функции и частное правило):

<math>

\begin{array}{lcl}

x & = & \frac{d^2x}{dA^2}     \\
    & = & -r\cos A - \frac{r^2\cos^2 A}{\sqrt{l^2-r^2\sin^2 A}}-\frac{-r^2\sin^2 A}{\sqrt{l^2-r^2\sin^2 A}} - \frac{r^2\sin A \cos A \cdot\left(-\frac{1}{2}\right)\cdot(-2)\cdot r^2\sin A\cos A}{\left (\sqrt{l^2-r^2\sin^2 A} \right )^3} \\
    & = & -r\cos A - \frac{r^2(\cos^2 A -\sin^2 A)}{\sqrt{l^2-r^2\sin^2 A}}-\frac{r^4\sin^2 A \cos^2 A}{\left (\sqrt{l^2-r^2 \sin^2 A}\right )^3}

\end{array} </math>

Пример графиков движения поршня

График показывает x, x', x" по отношению к углу поворота кривошипа для различных радиусов кривошипа, где L — длина шатуна (l) и R — радиус кривошипа (r):

Файл:Graph of Piston Motion.png
Единицами вертикальных осей являются: [дюймы] для положения, [дюймы/рад] для скорости, [дюймы/рад²] для ускорения.
Единицами горизонтальных осей является угол поворота кривошипа в [градусах].

Шаблон:Clr Анимация движения поршня с шатуном одинаковой длины и с кривошипом переменного радиуса на графике выше:

Файл:TRUE piston3 ANI.gif
Анимация движения поршня с различными радиусами кривошипа

Шаблон:Clr

Применение

Файл:ГИДРАВЛИЧЕСКИЙ ПОВОРОТНЫЙ МЕХАНИЗМ.GIF
Кривошипно-шатунный гидравлический поворотный механизм
Файл:Borchardt-Luger 1898.jpg
Пистолет Люгера, модель 1898 г.

Кривошипно-шатунный механизм используется в двигателях внутреннего сгорания, поршневых компрессорах, поршневых насосах, швейных машинах, кривошипных прессах, в приводе задвижек некоторых квартирных и сейфовых дверей. Также кривошипно-шатунный механизм применялся в брусовых косилках.

См. также

Другие способы преобразования вращательного движения в прямолинейное

Здесь была возможность смены Хойкена.

Примечания

Шаблон:Примечания

Литература

Ссылки

Шаблон:Rq Шаблон:Механизмы

  1. Шаблон:БСЭ3
  2. Шаблон:БСЭ3
  3. Шаблон:БСЭ3
  4. 4,0 4,1 Ritti, Tullia; Grewe, Klaus; Kessener, Paul (2007), «A Relief of a Water-powered Stone Saw Mill on a Sarcophagus at Hierapolis and its Implications», Journal of Roman Archaeology, 20, pp. 138—163
  5. Шаблон:Harvnb