Русская Википедия:Металличность

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Металли́чностьастрофизике) — относительная концентрация элементов тяжелее водорода и гелия в звёздах или иных астрономических объектах. Бо́льшая часть барионной материи во Вселенной находится в форме водорода и гелия, поэтому астрономы используют слово «металлы» как удобный термин для обозначения всех более тяжёлых элементов. Например, звёзды и туманности с относительно высоким содержанием углерода, азота, кислорода и неона в астрофизических терминах называются «богатыми металлами». При этом с точки зрения химии многие из этих элементов (в частности, перечисленные углерод, азот, кислород и неон) металлами не являются. Металличность используется, к примеру, для определения поколения и возраста звёзд[1].

Наблюдаемые изменения в химическом составе звёзд разных типов, основанные на спектральных особенностях, которые позже были приписаны металличности, побудили астронома Вальтера Бааде в 1944 году предположить существование двух разных популяций звёзд[2]. Они стали широко известны как звёзды населения I (богатые металлами) и населения II (бедные металлами). Третье звёздное население было введено в 1978 году, известное как звёзды населения III[3][4][5]. Теоретически предполагалось, что эти чрезвычайно бедные металлами звёзды были «первородными» звёздами, созданными во Вселенной. Общая металличность звезды обычно определяется с помощью общего содержания водорода, так как его содержание считается относительно постоянным во Вселенной, или содержания железа в звезде, содержание которого во Вселенной обычно линейно возрастает[6].

При первичном нуклеосинтезе, в первые минуты жизни Вселенной, в ней возникли водород (75 %), гелий (25 %), а также следы лития и бериллия. Образовавшиеся позднее первые звёзды, так называемые звёзды населения III, состояли только из этих элементов и практически не содержали металлов. Эти звёзды были чрезвычайно массивны (и, следовательно, их время жизни было мало). В течение их жизни в них синтезировались элементы вплоть до железа. Затем звёзды погибали в результате взрыва сверхновых и синтезированные элементы распределялись по Вселенной. Пока ещё ни одной звезды этого типа не было найдено.

Второе поколение звёзд (население II) родилось из материала звёзд первого поколения и имело довольно малую металличность, хотя и более высокую, чем у звёзд первого поколения. Маломассивные звёзды этого поколения имеют большое время жизни (миллиарды лет) и продолжают присутствовать среди звёзд нашей и других галактик. Более массивные звёзды второго поколения успели проэволюционировать до финальных стадий и выбросили газ, обогащённый металлами в результате звёздного нуклеосинтеза, в межзвёздную среду, из которой образовались звёзды третьего поколения (населения I). Звёзды третьего поколения, в том числе Солнце, содержат самое высокое количество металлов.

Таким образом, каждое следующее поколение звёзд более богато металлами, чем предыдущее, в результате обогащения металлами межзвёздной среды, из которой эти звёзды образуются.

Наличие металлов в газе, из которого состоит звезда, приводит к уменьшению его прозрачности и коренным образом влияет на все стадии эволюции звезды, от коллапса газового облака в звезду до поздних стадий её горения.

Из наблюдений (из анализа спектров звёзд) чаще всего можно получить только величину [<chem>Fe/H</chem>]:

<math>[\text{Fe}/\text{H}] = \log_{10}{\left(\frac{N_\text{Fe}}{N_\text{H}}\right)_\text{star}} - \log_{10}{\left(\frac{N_\text{Fe}}{N_\text{H}}\right)_\text{Sun}}.</math>

Здесь <math>\frac{N_\text{Fe}}{N_\text{H}}</math> — отношение концентрации атомов железа к атомам водорода на звезде и на Солнце соответственно. Считается, что величина [<chem>Fe/H</chem>] характеризует относительное содержание всех тяжёлых элементов (включая <chem>C, O, N, Ne</chem>) на звезде и на Солнце. Для очень старых звёзд значение [<chem>Fe/H</chem>] заключено между −2 и −1 (то есть содержание тяжёлых элементов в них меньше солнечного в 10—100 раз). Металличность звёзд галактического диска в основном меняется от −0,3 до +0,2, будучи при этом выше в центре и снижаясь ближе к краям галактики.

Металличность также влияет на минимальную массу звезды/коричневого карлика, при достижении которой начинаются определённые термоядерные реакции. Коричневым карликом с чрезвычайно низкой металличностью является SDSS J0104+1535. Этот же объект является и самым массивным из известных коричневых карликов[7].

Зависимость металличности от наличия планет

Астрономами из США, Бразилии и Перу были получены экспериментальные свидетельства того, что наличие в системе газового гиганта может влиять на химический состав родительской звезды. В теории, для оценки роли газового гиганта необходима двойная звезда, так как двойные звёзды формируются из одного газового облака и как следствие должны иметь предельно схожий химический состав. Однако наличие планеты у одного из компаньонов могло бы объяснить различие в химическом составе, так как звёзды и планеты формируются практически одновременно, что обусловливает взаимосвязь их процессов формирования. На практике, в качестве объекта изучения, была выбрана система 16 Лебедя являющаяся двойной звездой, с газовым гигантом 16 Лебедя B b обращающимся вокруг компаньона B. Оба компаньона являются аналогами Солнца[8]. Была рассчитана относительная распространённость 25 разных химических элементов в фотосфере звёзд. В результате оказалось, что 16 Лебедя A превосходит 16 Лебедя B (см. Список звёзд созвездия Лебедя) по содержанию металлов, а в качестве объяснения наличие у компаньона B газового гиганта[9].

См. также

Примечания

Шаблон:Примечания

Ссылки

Внешние ссылки

Шаблон:Выбор языка Шаблон:Звёзды