Русская Википедия:Силы Ван-дер-Ваальса

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Силы Ван-дер-Ваальса (Вандерваа́льсовы си́лы[1]) — силы межмолекулярногомежатомного) взаимодействия с энергией 10—20 кДж/моль. В современной науке они обычно применяется к силам, возникающим при поляризации молекул и образовании диполей. Открыты Й. Д. Ван дер Ваальсом в 1869 году.

Вандерваальсовы силы межатомного взаимодействия инертных газов обуславливают возможность существования агрегатных состояний инертных газов (газ, жидкость и твёрдые тела).

К вандерваальсовым силам относятся взаимодействия между диполями (постоянными и наведёнными). Название связано с тем фактом, что эти силы являются причиной поправки на внутреннее давление в уравнении состояния реального газа Ван-дер-Ваальса. Эти взаимодействия, а также водородные связи, определяют формирование пространственной структуры биологических макромолекул.

Вандерваальсовы силы также возникают между частицей (макроскопической частицей или наночастицей) и молекулой и между двумя частицами[2][3][4].

Классификация вандерваальсовых сил

Вандерваальсово взаимодействие состоит из трёх типов слабых электромагнитных взаимодействий:

  • Ориентационные силы, диполь-дипольное притяжение. Осуществляется между молекулами, являющимися постоянными диполями. Примером может служить HCl в жидком и твёрдом состоянии. Энергия такого взаимодействия обратно пропорциональна кубу расстояния между диполями.
  • Дисперсионное притяжение (лондоновские силы, дисперсионные силы). Обусловлены взаимодействием между мгновенным и наведённым диполем. Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями.
  • Индукционное притяжение (поляризационное притяжение). Взаимодействие между постоянным диполем и наведённым (индуцированным). Энергия такого взаимодействия обратно пропорциональна шестой степени расстояния между диполями.

До сих пор многие авторы исходят из предположения, что вандерваальсовы силы определяют межслоевое взаимодействие в слоистых кристаллах, что противоречит экспериментальным данным: масштабу анизотропии температуры Дебая и, соответственно, масштабу анизотропии решёточного отражения. Исходя из данного ошибочного[5] предположения построены многие двумерные модели, «описывающие» свойства, в частности графита и нитрида бора.

В последнем случае действуют так называемые силы Казимира и Казимира — Лифшица.

Проявления в природе

Файл:Gecko Leaftail 1.jpg
Геккон поднимается по стеклу.

Методы сравнительной оценки

Для количественной оценки вклада сил Ван-дер-Ваальса в общий баланс межмолекулярных взаимодействий между молекулами в кристаллических твердых телах в настоящее время используется метод расчета и анализа поверхностей Хиршфельда (обычно с применением программы CrystalExplorer ). Основные методики этого подхода описаны в [9][10].

Применение

Ван-дер-Ваальсовы взаимодействия, несмотря на невысокую интенсивность, могут служить основой для образования материалов, обладающих интересными свойствами. Например при включении магнитных компонентов, они могут создавать условия для образования Ван-дер-Ваальсова магнетизма и магнитных ван-дер-ваальсовых материалов: двумерных атомных кристаллов, содержащих магнитные элементы и, таким образом, обладающих внутренними магнитными свойствами[11]. А последние, при сочетании магнитов Ван-дер-Ваальса с материалами, применяемыми в области физики интенсивно свето-генерирующих веществ — открывает путь к дизайну и управлению коррелированными квантовыми материалами с помощью кавитационной квантовой электродинамики [12].

См. также

Примечания

Шаблон:Примечания

Литература

Внешние ссылки

  1. Такое написание даёт «Русский орфографический словарь: около 200 000 слов / Российская академия наук. Институт русскоrо языка им. В. В. Виноградова / Под ред. В. В. Лопатина, О. Е. Ивановой. — Изд. 4-е, испр. и доп. — М.: АСТ-ПРЕСС КНИГА, 2013. — 896 с. — (Фундаментальные словари русскою языка). — с. 68. — ISBN 978-5-462-01272-3».
  2. Шаблон:Книга
  3. Шаблон:Книга, ISBN 0-12-375181-0.
  4. Шаблон:Книга
  5. Ordin S. V., [Sharupin B. N. and Fedorov M. I.], Semiconductors J. Normal lattice vibrations and the crystal structure of anisotropic modifications of boron nitride // FTP, 32(9), 924—932, 1998.
  6. Шаблон:Cite web
  7. Autumn K., Sitti M., Liang Y. A. et al. Evidence for van der Waals adhesion in gecko setae Шаблон:Wayback // PNAS. — v. 99. — no. 19, 2002, pp. 12252—12256.
  8. Шаблон:Статья
  9. Шаблон:Статья
  10. Шаблон:Книга
  11. Шаблон:Статья
  12. Шаблон:Статья

Шаблон:Выбор языка Шаблон:Химическая связь Шаблон:Перевести