Электроника:Постоянный ток/Анализ сети постоянного тока/Метод узловых потенциалов: различия между версиями

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску
Нет описания правки
Нет описания правки
Строка 5: Строка 5:
=Метод узловых потенциалов<ref>[https://www.allaboutcircuits.com/textbook/direct-current/chpt-10/node-voltage-method/ www.allaboutcircuits.com - Node Voltage Method]</ref>=
=Метод узловых потенциалов<ref>[https://www.allaboutcircuits.com/textbook/direct-current/chpt-10/node-voltage-method/ www.allaboutcircuits.com - Node Voltage Method]</ref>=


Аналитический метод узловых потенциалов находит неизвестные напряжения в узлах схемы с помощью системы уравнений [[ПКТ]] ([[правило Кирхгофа для силы тока]]). Такой подход выглядит необычным, поскольку он предполагает замену источников напряжения эквивалентными источниками тока. Более того, значения сопротивлений в омах заменяются на эквивалентную электрическую проводимость ([[электропроводность]] или просто проводимость) измеряемую в сименсах, G = 1/R. Сименс (См, англ. S) – это единица электрической проводимости, заменившая устаревшую единицу измерения мо (англ. mho). В любом случае, См = Ом-1. И См показывает то же самое, что и устаревшее мо.
Аналитический метод узловых потенциалов находит неизвестные напряжения в узлах схемы с помощью системы уравнений [[ПКТ]] ([[правило Кирхгофа для силы тока]]). Такой подход выглядит необычным, поскольку он предполагает замену источников напряжения эквивалентными источниками тока. Более того, значения сопротивлений в омах заменяются на эквивалентную электрическую проводимость ([[электропроводность]] или просто проводимость) измеряемую в сименсах, G = 1/R. Сименс (См, англ. S) – это единица электрической проводимости, заменившая устаревшую единицу измерения мо (англ. mho). В любом случае, См = Ом<sup>-1</sup>. И См показывает то же самое, что и устаревшее мо.


== Метод расчёта узловых потенциалов ==
== Метод расчёта узловых потенциалов ==

Версия от 15:44, 4 мая 2022

Перевод: Макаров В. (valemak)
Проверка/Оформление/Редактирование: Мякишев Е.А.


Метод узловых потенциалов[1]

Аналитический метод узловых потенциалов находит неизвестные напряжения в узлах схемы с помощью системы уравнений ПКТ (правило Кирхгофа для силы тока). Такой подход выглядит необычным, поскольку он предполагает замену источников напряжения эквивалентными источниками тока. Более того, значения сопротивлений в омах заменяются на эквивалентную электрическую проводимость (электропроводность или просто проводимость) измеряемую в сименсах, G = 1/R. Сименс (См, англ. S) – это единица электрической проводимости, заменившая устаревшую единицу измерения мо (англ. mho). В любом случае, См = Ом-1. И См показывает то же самое, что и устаревшее мо.

Метод расчёта узловых потенциалов

Начнем со схемы, на которой изображены обычные источники напряжения. Выберем общий узел ЕПодстрочный текст0 в качестве опорной точки. Узловые напряжения E1 и E2 вычисляются относительно этой точки.

Рис. 1. Схема с обычными источниками напряжения.
Рис. 1. Схема с обычными источниками напряжения.
Рис. 2. Такой будет замена узлов на схеме, вместо источников напряжения теперь источники тока. Последовательные (по отношению к источнику напряжения) резисторы становятся параллельными (по отношению к источнику тока). Величина силы тока подбирается таким образом, чтобы в ветви создавалось эквивалентное напряжение.
Рис. 2. Такой будет замена узлов на схеме, вместо источников напряжения теперь источники тока. Последовательные (по отношению к источнику напряжения) резисторы становятся параллельными (по отношению к источнику тока). Величина силы тока подбирается таким образом, чтобы в ветви создавалось эквивалентное напряжение.

Замена источников напряжения и связанных последовательных резисторов эквивалентными источниками тока и параллельными резисторами приводит к изменениям в схеме. Заменяем сопротивление в омах электрической проводимостью в сименсах.

I1 = E1/R1 = 10/2 = 5 A
I2 = E2/R5 = 4/1 = 4 A
G1 = 1/R1 = 1/2 Ω   = 0.5 S
G2 = 1/R2 = 1/4 Ω   = 0.25 S
G3 = 1/R3 = 1/2.5 Ω = 0.4 S
G4 = 1/R4 = 1/5 Ω   = 0.2 S
G5 = 1/R5 = 1/1 Ω   = 1.0 S
Рис. 3. Вместо источников напряжения – источники тока (сила тока такова, чтобы создавалось эквивалентное напряжение). Вместо последовательных резисторов – параллельные. Вместо сопротивления - электрическая проводимость.
Рис. 3. Вместо источников напряжения – источники тока (сила тока такова, чтобы создавалось эквивалентное напряжение). Вместо последовательных резисторов – параллельные. Вместо сопротивления - электрическая проводимость.

Можно ещё упростить, объединив параллельные проводимости (бывшие сопротивления). Но перерисовывать схему не будем. Она уже и так готова к применению метода узлового напряжения.

GA = G1 + G2 = 0,5 S + 0,25 S = 0,75 S
GB = G4 + G5 = 0,2 S + 1 S = 1,2 S

Исходя из общих принципов метода узлового напряжения, мы составим пару уравнений ПКТ, подставив в них узловые напряжения V1 и V2. Мы делаем это, чтобы проиллюстрировать схему написания обходных уравнений.

GAE1 + G3 (E1 - E2) = I1 (1)
GBE2 - G3 (E1 - E2) = I2 (2)
(GA + G3) E1 -G3E2 = I1 (1)
-G3E1 + (GB + G3) E2 = I2 (2)

Коэффициенты последней пары уравнений выше перегруппированы, чтобы показать закономерность. Сумма проводимостей, подключённых к первому узлу, является положительным коэффициентом первого напряжения в уравнении (1). Сумма проводимостей, подключённых ко второму узлу, является положительным коэффициентом второго напряжения в уравнении (2). Остальные коэффициенты отрицательны и представляют собой проводимость между узлами.

Для обоих уравнений правая часть равна соответствующему источнику тока, подключённого к узлу. Этот шаблон позволяет нам быстро писать обходные уравнения. Это приводит к набору правил для аналитического метода узловых потенциалов.

Правила узловых потенциалов:

  • Преобразуйте источник напряжения, включенный последовательно с резистором, в эквивалентный источник тока с параллельным резистором.
  • Измените значения сопротивления на электропроводность.
  • Выберите опорный узел (E0).
  • Обозначьте на остальных узлах неизвестные напряжения (E1)(E2)...(EN).
  • Напишите уравнение ПКТ для каждого узла 1, 2, ..., N. Положительный коэффициент первого напряжения в первом уравнении представляет собой сумму проводимостей, подключенных к узлу. Коэффициент для второго напряжения во втором уравнении – это сумма проводимостей, подключенных к этому узлу. Повторите это для коэффициента третьего напряжения в третьем уравнении и так далее и для остальных уравнений. Если уравнения написать по порядку одно под другим, то эти коэффициенты расположены как бы «по диагонали».
  • Все остальные коэффициенты для всех уравнений отрицательны и представляют собой проводимости между узлами. Первое уравнение, второй коэффициент – это проводимость участка от узла 1 к узлу 2, третий коэффициент – это проводимость участка от узла 1 к узлу 3. Аналогично заполняются отрицательные коэффициенты для других уравнений.
  • Правая часть уравнений – это источник тока, подключенный к соответствующим узлам.
  • Решите систему уравнений для неизвестных напряжений в узлах.

Пример применения метода узловых потенциалов

Задание:

составьте уравнения и решите для напряжений в узлах, используя числовые значения на рисунке выше.

Решение:

{{{2}}}

Итог

  • Для сети, состоящей из элементов с электропроводностью и источников тока, аналитический метод узловых потенциалов находит неизвестные напряжения в узлах с помощью уравнений ПКТ.
  • Подробные рекомендации по составлению обходных уравнений – см. вышеприведённые в этой лекции правила.
  • Единица проводимости G – сименс (S). Проводимость обратно пропорциональна сопротивлению: G = 1/R.

См.также

Внешние ссылки