Английская Википедия:C/2013 A1 (Siding Spring)

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Other uses Шаблон:Use dmy dates Шаблон:Infobox Comet

C/2013 A1 (Siding Spring) is an Oort cloud comet discovered on 3 January 2013 by Robert H. McNaught at Siding Spring Observatory using the Шаблон:Convert Uppsala Southern Schmidt Telescope.[1][2]

At the time of discovery it was 7.2 AU from the Sun and located in the constellation Lepus. Comet C/2013 A1 probably took millions of years to come from the Oort cloud. After leaving the planetary region of the Solar System, the post-perihelion orbital period (epoch 2050) is estimated to be roughly 1 million years.[3]

C/2013 A1 passed the planet Mars very closely on 19 October 2014, at a distance of Шаблон:Convert.[4] After its discovery, there was thought to be a chance of a collision with Mars, but this possibility was excluded when its orbit was determined with about a 200-day observation arc.[5]

All NASA Mars orbiters—including 2001 Mars Odyssey,[6] Mars Reconnaissance Orbiter[7] and MAVEN[8]—as well as ESA's orbiter, Mars Express,[9] and ISRO's orbiter, the Mars Orbiter Mission,[10] reported a healthy status after the comet flyby on 19 October 2014.[11][12] During the flyby, orbiters around Mars detected thousands of kilograms per hour of comet dust composed of magnesium, iron, sodium, potassium, manganese, nickel, chromium and zinc.[13] In addition, the comet nucleus was determined to be between Шаблон:Convert,[14][15][13] much smaller than originally assumed. The nucleus rotates once every eight hours.[16]

Discovery

The comet was discovered on 3 January 2013 by professional astronomer Robert McNaught at the Siding Spring Observatory at Coonabarabran NSW Australia and received the official designation C/2013 A1.[1] It was named Siding Spring based on a tradition to identify the observatory that discovered it. Three images were obtained through the use of a CCD camera mounted on the Uppsala Southern Schmidt Telescope with a spherical mirror of 0.5 meters in diameter. Comet Siding Spring had an apparent magnitude of 18.4 to 18.6. At the time of its discovery, it was Шаблон:Convert from the Sun.

Precovery images by the Catalina Sky Survey from 8 December 2012 were found quickly and announced with the discovery giving Comet Siding Spring a 29-day observation arc.[1] On 3 March 2013, Pan-STARRS precovery images from 4 October 2012 were announced that extended the observation arc to 148 days.[17] Шаблон:Multiple image

Encounter with Mars

Файл:Animation of C/2013 A1 orbit.gif
Animation of C/2013 A1 orbit
Шаблон:Legend2Шаблон:·Шаблон:Legend2Шаблон:·Шаблон:Legend2Шаблон:·Шаблон:Legend2Шаблон:·Шаблон:Legend2Шаблон:·Шаблон:Legend2

Comet Siding Spring passed extremely close to Mars on 19 October 2014 at 18:28 ± 0:01 UTC.[18] Initial observations by Leonid Elenin on 27 February 2013, suggested that it might pass Шаблон:Convert from the center of Mars.[19] With an observation arc of 733 days, the nominal pass is Шаблон:Convert from the center-point of Mars and the uncertainty region shows that it would not come closer than Шаблон:Convert.[18]

For comparison, Mars's outer moon Deimos orbits it at a distance of Шаблон:Convert. Due to the uncertainty region, there was the possibility that it could pass Mars as far away as Шаблон:Convert. It actually passed by at a distance of Шаблон:Convert,[4] at a relative velocity of Шаблон:Convert.[18] As seen from Mars, C/2013 A1 peaked at approximately apparent magnitude −6.[20]Шаблон:Dubious Шаблон:Multiple image

Predicted effects

Файл:PIA18593-Mars-CometSidingSpring-NEOWISE-20140728.jpg
C/2013 A1 – four images

The main body of the comet's tail was projected to miss Mars by some 10 Mars diameters.[23] As a result, only higher-than-average-velocity meteoroid dust, ejected earlier in the approach of the comet, allow for impacts on Mars, its moons, and orbiting spacecraft. Dust particles ejected from the nucleus of the comet, at more than double the expected velocity when the comet was 3 AU from the Sun, could reach Mars approximately 43 to 130 min after the closest approach of the comet.[24] There is a possibility for millimeter- to centimeter-size particles released more than 13 AU from the Sun, however, this is considered unlikely,[24] although massive ejections from farther out have been deduced.[25]

In 2013 it was thought possible that Comet Siding Spring would create a meteor shower on Mars or be a threat to the spacecraft in Mars orbit.[26] Studies in 2014 showed the threat to orbiting spacecraft to be minimal.[27] The greatest threat would be about 100 minutes after closest approach.[27] Mars passed about Шаблон:Convert from the comet's orbit around 20:10 UT.[28]

The coma of the comet is projected to more than double the amount of hydrogen in the high atmosphere for a period of several tens of hours and to warm it by about 30 K for a few hours—the combination increasing the effect of atmospheric drag on the Mars Reconnaissance Orbiter and MAVEN spacecraft causing a measurable increase in orbital decay because of atmospheric ram pressure.[29] These spacecraft will be approaching Mars to minimum altitudes of 250 km and 150 km and orbital periods of 3 and 4 hours, respectively. The amount of drag cannot be narrowed down greatly until the production rate of the comet is known, but it could be from 1.6 to 40 times normal drag. MAVEN, in particular, also has instruments to observe any changes to the gas composition of the atmosphere. The closer moon of Mars, Phobos, orbits far higher, at a minimum distance of Шаблон:Convert,[30] more than 10 times the height of Mars's atmosphere.[31]

Estimates for the diameter of the nucleus have varied from Шаблон:Convert,[32][33] but now the nucleus is known to be only approximately Шаблон:Convert in diameter,[14][15] roughly the diameter of asteroid Шаблон:Mpl that approached Mars on 29 July 2014.[34] Based on early upper-limit size estimates, the resulting upper-limit energy of a hypothetical impact with Mars was 24 billion megatons.[32][35] The diameter of such a hypothetical impact crater would be roughly ten times the diameter of the comet's nucleus.[32] A 700-meter impactor would create around a Шаблон:Convert crater.

The odds of an impact with Mars were 1 in 1250 in March 2013,[36] 1 in 2000 in late March 2013,[33] 1 in 8000 by April 2013,[37] and 1 in 120,000 by 8 April 2013.[38] The 8 April 2013 JPL Small-Body Database 3-sigma solution was the first estimate to show that the minimum approach by Comet Siding Spring would miss Mars.[18][24]

Actual effects

MAVEN detected an intense meteor shower.[16] Comet Siding Spring has a rotation period of approximately 8 hours.[16]Шаблон:Clarify Debris from Comet Siding Spring added a temporary, but strong layer of ions to Mars's ionosphere (the first time such a phenomenon has been observed on any planet), and 85 tonnes of cometary dust were vaporized high in Mars's atmosphere. Magnesium, iron, and other metals were observed to have been deposited.[13] An observer on the surface would have seen a few tens of meteors during the plane crossing.[39]

During the flyby of Mars at a proximity of 140,000 km, Comet Siding Spring's magnetic field, generated by its interaction with the solar wind, caused a violent turmoil that lasted for several hours, long after its flyby. Its coma washed over Mars with the dense inner coma, reaching or almost reaching the planet's surface. The cometary magnetic field temporarily merged with and overwhelmed Mars' weak magnetic field.[40]

Observation

Файл:PIA17833-CometSidingSpring-C2013A1-NEOWISE-20140128.jpg
Comet Siding Spring as seen by NEOWISE on 16 January 2014

As seen from Earth, on 19 October 2014, Mars was in the constellation Ophiuchus, near globular cluster NGC 6401, and 60 degrees from the Sun. Mars and C/2013 A1 were Шаблон:Convert from Earth.[41] As of October 2014, C/2013 A1 had an apparent magnitude of roughly 11 and was the third-brightest comet in the sky at that time.[42][43] At an apparent magnitude of 0.9, Mars was estimated to be about 11,000 times brighter than the diffuse-looking comet with a low-surface brightness.[44] To observe C/2013 A1 visually from Earth would have required a telescope with an optical mirror at least Шаблон:Convert in diameter. By November 2014 the comet had dimmed to magnitude 11.6 and was only around the fifth-brightest comet in the sky.[45]

Mars and Comet Siding Spring were visible to the STEREO-A spacecraft during the 2014 encounter.[46] In orbit around Mars were the spacecraft Mars Reconnaissance Orbiter, 2001 Mars Odyssey, ESA's Mars Express, MAVEN, and the Indian Mars Orbiter Mission (Mangalyaan). The last two missions had arrived less than one month before the closest approach of C/2013 A1 to Mars. All these artificial satellites may have been exposed to potentially damaging particles.[47][48] The level of exposure will not be known for months, but NASA had taken several "precautionary measures" as it prepared to study C/2013 A1.[49] Two key strategies to lessen the risk were to place the orbiters on the opposite side of Mars at the time of the highest risk and to orient the orbiters so that their most vulnerable parts were not in the line of impact.[48] On the ground, the Curiosity and Opportunity rovers obtained images as well. Results from the observations will be discussed during a special session "Comet C/2013 A1 Siding Spring at Mars" at the 2014 AGU Fall Meeting in San Francisco on 18 December 2014.Шаблон:Update inline

Gallery

Before comet flyby

Шаблон:Multiple image
Шаблон:Multiple image
Шаблон:Wide image

During comet flyby

Шаблон:Wide image Шаблон:Gallery
Шаблон:Gallery Шаблон:Wide image

References

Шаблон:Reflist

External links

Шаблон:Commons category

Шаблон:Comets Шаблон:Mars Шаблон:2013 in space Шаблон:2014 in space

  1. 1,0 1,1 1,2 Ошибка цитирования Неверный тег <ref>; для сносок MPEC2013-A14 не указан текст
  2. Ошибка цитирования Неверный тег <ref>; для сносок NYT-20140804 не указан текст
  3. Ошибка цитирования Неверный тег <ref>; для сносок barycenter не указан текст
  4. 4,0 4,1 Шаблон:Cite journal
  5. Ошибка цитирования Неверный тег <ref>; для сносок esa не указан текст
  6. Ошибка цитирования Неверный тег <ref>; для сносок NASA-20141019-ODY не указан текст
  7. Ошибка цитирования Неверный тег <ref>; для сносок NASA-20141019-MRO не указан текст
  8. Ошибка цитирования Неверный тег <ref>; для сносок NASA-20141019-MAV не указан текст
  9. Ошибка цитирования Неверный тег <ref>; для сносок ESA-20141020 не указан текст
  10. Ошибка цитирования Неверный тег <ref>; для сносок ISRO MOM safe after Mars comet flyby не указан текст
  11. Ошибка цитирования Неверный тег <ref>; для сносок NASA-20141019 не указан текст
  12. Ошибка цитирования Неверный тег <ref>; для сносок NYT-20141019 не указан текст
  13. 13,0 13,1 13,2 Ошибка цитирования Неверный тег <ref>; для сносок NYT-20141107-KC не указан текст
  14. 14,0 14,1 Ошибка цитирования Неверный тег <ref>; для сносок HiRISE141021 не указан текст
  15. 15,0 15,1 Ошибка цитирования Неверный тег <ref>; для сносок Swift не указан текст
  16. 16,0 16,1 16,2 Ошибка цитирования Неверный тег <ref>; для сносок JPL141107 не указан текст
  17. Ошибка цитирования Неверный тег <ref>; для сносок mpc не указан текст
  18. 18,0 18,1 18,2 18,3 Ошибка цитирования Неверный тег <ref>; для сносок jpl-close не указан текст
  19. Ошибка цитирования Неверный тег <ref>; для сносок Elenin0227 не указан текст
  20. Шаблон:Cite web
  21. Шаблон:Cite web
  22. Шаблон:Cite web
  23. Шаблон:Cite journal
  24. 24,0 24,1 24,2 Ошибка цитирования Неверный тег <ref>; для сносок Farnocchia2014 не указан текст
  25. Шаблон:Cite arXiv
  26. Ошибка цитирования Неверный тег <ref>; для сносок NS-20131206 не указан текст
  27. 27,0 27,1 Ошибка цитирования Неверный тег <ref>; для сносок CIOC140802 не указан текст
  28. Ошибка цитирования Неверный тег <ref>; для сносок Kelley2014 не указан текст
  29. Шаблон:Cite journal
  30. Шаблон:Cite web
  31. Шаблон:Cite web
  32. 32,0 32,1 32,2 Ошибка цитирования Неверный тег <ref>; для сносок Elenin0225 не указан текст
  33. 33,0 33,1 Ошибка цитирования Неверный тег <ref>; для сносок nasa-26mar не указан текст
  34. Шаблон:Cite sbdb
  35. Ошибка цитирования Неверный тег <ref>; для сносок Bell не указан текст
  36. Ошибка цитирования Неверный тег <ref>; для сносок Elenin0303 не указан текст
  37. Ошибка цитирования Неверный тег <ref>; для сносок CBS2013-04 не указан текст
  38. Ошибка цитирования Неверный тег <ref>; для сносок NASA2013-081 не указан текст
  39. Ошибка цитирования Неверный тег <ref>; для сносок CIOC141110 не указан текст
  40. Шаблон:Cite journal
  41. Ошибка цитирования Неверный тег <ref>; для сносок MPC-eph не указан текст
  42. Ошибка цитирования Неверный тег <ref>; для сносок Yoshida141011 не указан текст
  43. Ошибка цитирования Неверный тег <ref>; для сносок MPEC2014-T44 не указан текст
  44. Math: <math>(\sqrt[5]{100})^{11-0.9}\approx 10964</math>
  45. Ошибка цитирования Неверный тег <ref>; для сносок Yoshida141102 не указан текст
  46. Ошибка цитирования Неверный тег <ref>; для сносок STEREO-HI2 не указан текст
  47. Ошибка цитирования Неверный тег <ref>; для сносок Moorhead-Jan. 2014 не указан текст
  48. 48,0 48,1 Ошибка цитирования Неверный тег <ref>; для сносок evaluating не указан текст
  49. Шаблон:Cite web