Перевод: Макаров В. (valemak)
Проверка/Оформление/Редактирование: Мякишев Е.А.
Синхронные двигатели[1]
Однофазные синхронные двигатели
Однофазные синхронные двигатели в основном используются в небольших приложениях, где требуется точный учёт времени, например, в различного рода хронометрах (в том числе и часах) и магнитофонах. Хотя кварцевые часы с батарейками широко доступны, часы с питанием от сети переменного тока имеют лучшую долгосрочную точность (эта разница очевидна, когда счёт времени исчисляется месяцами).
Это связано с тем, что операторы электростанции целенаправленно поддерживают долгосрочную точность частоты системы распределения переменного тока. Как только он начинает отставать на несколько циклов, оператор обеспечит восполнение потерянных циклов переменного тока, так что потери времени не накапливаются.
Большие и малые синхронные двигатели
Большие синхронные двигатели полезны в промышленности, когда требуется мощность более 10-ти лошадиных сил (от 10 кВт и выше), благодаря более высоким КПД и ведущему коэффициенту мощности. Большие синхронные двигатели на несколько процентов эффективнее, чем более распространённые асинхронные двигатели, хотя синхронный двигатель более сложен.
Поскольку двигатели и генераторы схожи по конструкции, должна быть возможность использовать генератор в качестве двигателя и, наоборот, использовать двигатель в качестве генератора.
Асинхронный двигатель похож на генератор переменного тока с вращающимся магнитным полем. На рисунке ниже показаны небольшие генераторы переменного тока с вращающимся постоянным магнитным полем. (1) и (2) – два параллельно подключённых синхронных генератора переменного тока, приводимых в действие механическими источниками энергии. Либо же это генератор переменного тока, приводящий в действие синхронный двигатель. Или это могут быть два двигателя, если подключён внешний источник питания.
Дело в том, что в любом случае роторы должны работать с одинаковой номинальной частотой и находиться в фазе друг с другом. То есть они должны быть синхронизированы между собой. Процедура синхронизации двух генераторов переменного тока такова:
(1) размыкание переключателя,
(2) приведение в действие обоих генераторов с одинаковой скоростью вращения,
(3) ускорение или замедление фазы одного блока до тех пор, пока оба выхода переменного тока не будут в фазе,
(4) замыкание выключателя, как они сойдутся по фазе.
Если синхронизации не будет, генераторы переменного тока будут блокировать друг друга, что потребует значительного крутящего момента, чтобы отделить один блокиратор (не синхронизированный) от другого.
Рис. 1. (1), (2) – Синхронный двигатель, работающий от синхронного генератора. И двигатель, и генератор состоят из вращающегося ротора, питающегося от постоянного тока (обмотки ротора создают вращающееся постоянное магнитное поле) и неподвижного статора, питающегося от переменного тока (обмотки статора создают переменное магнитное поле).
Поэтому можно также считать, что это изображение либо двух синхронных генераторов, либо двух синхронных двигателей. (3) – Угол отклонения, при котором взаимодействие постоянного и переменного магнитных полей создаёт достаточной крутящий момент, позволяющий работать двигателю/генератору. На этих изображениях статоры двухполюсные.
Расчёт крутящего момента в синхронном двигателе
Если больший крутящий момент в направлении вращения приложен к ротору одного из вышеупомянутых вращающихся генераторов переменного тока, угол ротора будет увеличиваться (противоположно (3)) по отношению к магнитному полю в катушках статора, пока всё ещё синхронизированного, и ротор подаёт энергию в сеть переменного тока, как генератор переменного тока.
Ротор также будет смещён вперёд относительно ротора другого генератора. Если нагрузка, такая как тормоз, приложена к одному из вышеуказанных устройств, угол ротора будет отставать от поля статора, как в (3), извлекая энергию из сети переменного тока, как двигатель.
Если приложен чрезмерный крутящий момент или сопротивление, ротор превысит максимальный угол крутящего момента, опережая или отставая настолько, что синхронизация будет утеряна. Крутящий момент развивается только при сохранении синхронизации двигателя.
Повышение скорости синхронных двигателей
В случае использования небольшого синхронного двигателя вместо генератора переменного тока нет необходимости выполнять сложную процедуру синхронизации для генераторов переменного тока. Тем не менее, синхронный двигатель не запускается автоматически и должен быть доведён до приблизительной электрической скорости генератора переменного тока, прежде чем он синхронизируется с частотой вращения генератора.
После достижения нужной скорости синхронный двигатель будет поддерживать синхронность с источником питания переменного тока и развивать крутящий момент.
Рис. 2. Синусоидальная волна для переменного напряжения, приводящего в движение синхронный двигатель. На всех этапах проще разбираться с направлением движения, если помнить, что одноимённые полюса отталкиваются, а разноимённые притягиваются. На этих изображениях статоры двухполюсные.
Предполагая, что двигатель достигает синхронной скорости, когда синусоидальная волна входит в положительный полупериод (точка 1 на кривой, часть 1 рисунка 2), нижняя катушка статора (имеющая «северную» полярность) отталкивает «северный» полюс ротора, в то время как верхняя катушка статора (имеющая «южную» полярность) притягивает «северный» полюс ротора. Подобным образом «южный» полюс ротора отталкивается от верхней катушки статора (имеющей «южную» полярность) и притягивается к нижней катушке статора (имеющей «северную» полярность).
В тот момент, когда синусоида достигает пика (точка 2 на кривой, часть 2 рисунка 2), крутящий момент, удерживающий «северный» полюс ротора сверху, становится максимальным. Этот крутящий момент уменьшается по мере уменьшения синусоидальной волны до 0 В постоянного тока (точка 3 на кривой, часть 3 рисунка 2), где крутящий момент минимален.
Поскольку синусоида входит в отрицательный полупериод (между точками 3 и 4), нижняя «южная» катушка статора отталкивает «южный» полюс ротора, притягивая «северный» полюс ротора. Подобным образом «северный» полюс ротора отталкивается от верхней «северной» катушки статора и притягивается к нижней «южной» катушке статора. В точке 4 синусоида достигает отрицательного пика с удерживающим моментом, который снова на максимуме. Когда синусоидальная волна изменяется с отрицательной на 0 В постоянного тока и затем переходит в положительную область, весь процесс повторяется – начинается новый цикл синусоидальной волны.
Обратите внимание, что на приведённом рисунке показано положение ротора в режиме холостого хода (α = 0°). На практике нагрузка на ротор приведёт к тому, что ротор будет отставать от положений, показанных углом α. Этот угол увеличивается с нагрузкой до тех пор, пока максимальный крутящий момент двигателя не будет достигнут при α = 90°.
За пределами этого угла теряются синхронизация и крутящий момент. Ток в катушках однофазного синхронного двигателя пульсирует с переменной полярностью.
Если скорость роторного постоянного магнитного поля близка к частоте этого чередования, ротор синхронизируется с этим чередованием. Поскольку переменное магнитное поле катушки статора пульсирует и не вращается, необходимо увеличить скорость ротора (по сути являющимся вращающимся постоянным магнитом) с помощью вспомогательного двигателя. Это небольшой асинхронный двигатель, вроде тех, что мы рассмотрим в следующем разделе.
Рис. 3. Добавление дополнительных полюсов на статор позволяет снизить скорость вращения ротора, нужную для синхронизации. На этом изображении статор 12-полюсный.
2-полюсный (с парой полюсов «север»/«юг») генератор создаёт синусоидальную волну 60 Гц со скоростью вращения 3600 об./мин. (оборотов в минуту). 3600 об./мин. соответствует 60 оборотам в секунду. Аналогичный двухполюсный синхронный двигатель с постоянными магнитами также будет вращаться со скоростью 3600 об./мин.
Чтобы сконструировать двигатель с меньшей скоростью вращения, на статор нужно добавить больше пар полюсов. 4-полюсный двигатель будет вращаться со скоростью 1800 об./мин., 12-полюсный – со скоростью 600 об./мин. Показанный стиль конструкции (как на рисунке выше) предназначен для иллюстрации самой идеи. Многополюсные синхронные двигатели со статором с более высоким КПД и большим крутящим моментом фактически также имеют несколько полюсов и в роторе.
Рис. 4. Однообмоточный 12-полюсный синхронный двигатель.
Вместо того, чтобы наматывать 12 катушек для 12-полюсного двигателя, можно намотать одну катушку на двенадцать стальных штырей, соединив одним проводом полюсные сегменты, как показано на рисунке выше. Хотя полярность катушки периодично меняется из-за приложенного переменного тока, предположим, что в какой-то момент верхняя часть – «север», а нижняя – «юг».
Полюса направляют «южный» поток магнитного поля вниз и затем вверх снаружи от катушки. Эти 6 южных частей чередуются с 6-ю северными ушками, загнутыми наверх от верхушки стального полюса катушки. Таким образом, стержень ротора с постоянным магнитом придёт во взаимодействие с 6-ю парами полюсов, соответствующим 6-ти циклам переменного тока, совершаемых за одно физическое вращение стержневого магнита.
Скорость вращения будет 1/6 от электрической скорости переменного тока. Скорость ротора будет 1/6 от скорости 2-полюсного синхронного двигателя. Пример: 60 Гц вращает 2-полюсный двигатель со скоростью 3600 об./мин. или 600 об./мин. для 12-полюсного двигателя.
Рис. 5. Фото взято с сайта Westclox History (www.clockHistory.com).
На этом рисунке изображён статор 12-полюсного синхронного часового двигателя Westclox. Конструкция аналогична предыдущему рисунку с одной общей катушкой. Конструкция с одной обмоткой экономична для двигателей с низким крутящим моментом. Этот двигатель со скоростью 600 об./мин. приводит в движение редукторы, перемещая стрелки часов.
Вопрос: Если двигатель Westclox будет работать со скоростью 600 об./мин. от источника питания 50 Гц, сколько полюсов потребуется?
Ответ: 10-полюсный двигатель имеет 5 пар полюсов NS («север»/«юг»). Он будет вращаться со скоростью 50 / 5 = 10 об./сек. или 600 об./мин. (10 с-1 x 60 секунд в минуте).
Рис. 6. Фото взято с сайта Westclox History (www.clockHistory.com).
Ротор на этом рисунке состоит из стержня постоянного магнита и стальной чашки-корпуса асинхронного двигателя. Шина синхронного двигателя, вращающаяся внутри полюсных лапок, фиксирует точное время. Чашка асинхронного двигателя за пределами стержневого магнита подходит снаружи над «язычками», обеспечивая самозапуск. Какое-то время выпускались не способные к самозапуску двигатели без чашечки асинхронного двигателя.
Трёхфазные синхронные двигатели
Трёхфазный синхронный двигатель, показанный на рисунке ниже, создаёт электрически вращающееся магнитное поле в статоре. Такие двигатели не могут запускаться автоматически при соединении с источником питания с фиксированной частотой, например, 50 или 60 Гц, как это происходит в промышленных условиях.
Кроме того, для двигателей с мощностью в несколько лошадиных сил (многокиловаттных), используемых в промышленности, ротор не является постоянным магнитом, а электромагнитом. Большие промышленные синхронные двигатели более эффективны, чем асинхронные двигатели. Они используются, когда требуется обеспечить постоянную скорость. Обладая опережающим коэффициентом мощности, они могут корректировать линию переменного тока на отстающий коэффициент мощности.
Три фазы возбуждения статора складываются как векторы, тогда создаётся единое результирующее магнитное поле, вращающееся с частотой f/2n раз в секунду, где f - частота линии электропередачи (50 или 60 Гц для промышленных двигателей, работающих от линии электропередачи). Количество полюсов – n. Для получения скорости ротора в об./мин. эта цифра умножается на 60 (потому что в минуте 60 секунд).
S = f × 120 / n
где:
S = частота вращения ротора в об./мин. f = частота сети переменного тока n = количество полюсов на фазу
|
Трёхфазный 4-полюсный (4 полюса на фазу) синхронный двигатель вращается со скоростью 1800 об./мин. при мощности 60 Гц или 1500 об./мин. при мощности 50 Гц. Если катушки запитываются по очереди в последовательности Ф-1, Ф-2, Ф-3, ротор по очереди указывает на соответствующие полюса.
Поскольку синусоиды фактически перекрываются, результирующее поле будет вращаться не прерывисто, а более-менее плавно. Например, когда синусоиды Ф-1 и Ф-2 совпадают, магнитный поток будет на пике, указанным между этими полюсами. Показанный на рисунке ниже двухполюсный ротор, являющийся магнитным стержнем, типичен только для небольших двигателей.
Ротор с несколькими магнитными полюсами (на рисунке ниже он изображён справа) используется в любом эффективном двигателе, приводящем в движение значительную нагрузку. Это уже не цельные магниты, а электромагниты с контактным кольцом в крупных промышленных двигателях. Крупные промышленные синхронные двигатели способны к самозапуску с помощью встроенных в якорь проводов с короткозамкнутым ротором, действующих как асинхронный двигатель.
Электромагнитный якорь возбуждается только после того, как ротор набирает скорость, близкую к синхронной.
Рис. 7. Трёхфазный 4-полюсный синхронный двигатель.
Малые многофазные синхронные двигатели
Малые многофазные синхронные двигатели запускаются путём линейного увеличения частоты привода от нуля до конечной рабочей частоты. Многофазные управляющие сигналы генерируются электронными схемами и их волны будут прямоугольными во всех приложениях, кроме самых требовательных.
Такие двигатели известны как бесщёточные двигатели постоянного тока. Истинные синхронные двигатели управляются синусоидальными сигналами. Можно использовать двух- или трёхфазный привод, запитав соответствующее количество обмоток статора. На рисунке выше показано только 3 фазы.
Рис. 8. Принципиальная схема синхронного двигателя с электронным управлением.
На этой блок-схеме показана приводная электроника, связанная с синхронным двигателем низкого напряжения (12 В постоянного тока). Здесь имеется датчик положения, встроенный в двигатель, который выдаёт сигнал низкого уровня с частотой, пропорциональной скорости вращения двигателя.
Датчик положения может быть таким же простым, как твердотельные датчики магнитного поля, работающие на эффекте Холла, обеспечивающие синхронизацию (направление тока якоря) с электроникой привода. Датчик положения может быть угловым датчиком с высоким разрешением, таким как резольвер, индуктосин (магнитный энкодер) или оптический энкодер (о них мы говорили в последнем разделе предыдущей главы).
Если требуется постоянная и точная скорость вращения (как для дисковода), то в устройство двигателя могут быть включены тахометр и контур фазовой автоподстройки частоты (рисунок ниже). Сигнал тахометра, являющийся последовательностью импульсов, пропорциональный скорости двигателя, возвращается в контур фазовой автоподстройки частоты, который сравнивает частоту и фазу тахометра со стабильным источником опорной частоты, например кварцевым генератором.
Рис. 9. Контур фазовой автоподстройки частоты контролирует скорость синхронного двигателя.
Бесщёточный двигатель постоянного тока
Двигатель, управляемый прямоугольными волнами тока, который обеспечивается простыми датчиками, работающими на эффекте Холла, известен как бесщёточный двигатель постоянного тока. Этот тип двигателя имеет более высокие колебания крутящего момента при вращении вала, чем двигатель с синусоидальным приводом. Для многих приложений это не проблема. Хотя в этом разделе нас в первую очередь интересуют синхронные двигатели.
Рис. 10. Пульсации крутящего момента бесщёточного двигателя и его механический аналог.
Пульсация крутящего момента или зубчатость вызывается магнитным притяжением полюсов ротора к полюсным наконечникам статора (рисунок выше). Обратите внимание, что катушки статора отсутствуют. Ротор (являющийся постоянным магнитом) можно даже вращать вручную, но он будет испытывать притяжение к полюсным наконечникам, когда с ними сравняется соответствующий полюс ротора.
На это можно взглянуть с механической точки зрения. Будет ли пульсация крутящего момента проблемой для двигателя, используемого в магнитофоне? Будет, ибо мы не хотим, чтобы двигатель то ускорялся, то замедлялся, когда воспроизводящей головки считывает магнитные метки с кассетной ленты. Будет ли пульсация крутящего момента проблемой для двигателя вентилятора? Нет.
Рис. 11. Обмотки, распределённые в ленте, создают поле, соответствующее более синусоидальным сигналам.
Если двигатель приводится в действие синусоидальными волнами тока, синхронными с обратной ЭДС двигателя, он классифицируется как синхронный двигатель переменного тока, независимо от того, генерируются ли или нет волны привода электронными средствами. Синхронный двигатель будет генерировать синусоидальную обратную ЭДС, если магнитное поле статора имеет синусоидальное распределение.
Он будет более синусоидальным, если обмотки полюсов будут намотаны как ремешки в множестве пазов, а не сосредоточены на одном большом полюсе (как показано на большинстве наших упрощённых иллюстраций). Такая конструкция подавляет многие нечётные гармоники магнитного поля статора.
Пазы с меньшим количеством витков на краю фазовой обмотки могут делить пространство с другими фазами. Намоточные ремешки могут принимать альтернативную концентрическую форму, как показано на рисунке ниже.
Рис. 12. Фазовые обмотки концентрически вставлены в пазы как ремни.
Для двухфазного двигателя, приводимого в действие синусоидальной волной, крутящий момент постоянен на протяжении всего оборота в соответствии с тригонометрическим тождеством:
Генерация и синхронизация сигнала привода требуют более точной индикации положения ротора, чем это обеспечивают датчики Холла, используемые в бесщёточных двигателях постоянного тока. Резольвер или оптический/магнитный датчик, обеспечивает разрешение от сотен до тысяч частей (импульсов) за один оборот.
Резольвер выдаёт аналоговые сигналы углового положения в виде сигналов, пропорциональных синусу и косинусу угла поворота вала. Энкодеры обеспечивают цифровую индикацию углового положения в последовательном или параллельном формате.
Привод синусоидальной волны на самом деле может исходить от ШИМ (широтно-импульсного модулятора) –высокоэффективного метода аппроксимации синусоидальной волны цифровым сигналом. Каждая фаза требует, чтобы управляющая электроника для этой формы сигнала была сдвинута по фазе на соответствующую величину для каждой фазы.
Рис. 13. ШИМ аппроксимирует синусоидальную волну.
Преимущества синхронного двигателя
КПД синхронного двигателя выше, чем у асинхронных двигателей. Синхронный двигатель также может иметь меньшие размеры, особенно если в роторе используются высокоэнергетические постоянные магниты. Появление современной твердотельной электроники позволяет управлять этими двигателями с регулируемой скоростью.
В железнодорожной тяге в основном используются асинхронные двигатели. Однако удобно внутри ведущего колеса установить небольшой синхронный двигатель. Версия этого двигателя с высокотемпературным сверхпроводником составляет от одной пятой до одной трети веса двигателя с медной обмоткой.
Самый крупный экспериментальный синхронный двигатель со сверхпроводниками способен управлять военным кораблём класса «эсминец». Всегда очень важен электронный привод с регулируемой скоростью. Привод с регулируемой скоростью снижает напряжение привода на низкой скорости из-за уменьшения индуктивного сопротивления на более низкой частоте.
Для развития максимального крутящего момента, волна магнитного поля ротора должна отставать от поля статора на 90°. Если больше, то теряется синхронизация. Если сильно меньше, то снижается крутящий момент. Таким образом, необходимо точно знать положение ротора. И положение ротора по отношению к полю статора необходимо рассчитывать и контролировать.
Этот тип управления известен как векторное управление фазой. Он реализован с помощью быстродействующего микропроцессора, управляющего широтно-импульсным модулятором фаз статора. Статор синхронного двигателя при этом такой же, как и у более популярного асинхронного двигателя.
В результате электронное управление скоростью промышленного уровня, используемое в асинхронных двигателях, также применимо к большим промышленным синхронным двигателям. Если ротор и статор обычного вращающегося синхронного двигателя раскручены, получается синхронный линейный двигатель.
Этот тип двигателя применяется для точного высокоскоростного линейного позиционирования.
См.также
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|
Внешние ссылки
Теория по электронике |
---|
Постоянный ток |
---|
Основные концепты электричества |
• Статическое электричество • Проводники, диэлектрики и поток электронов • Что такое электрические цепи? • Напряжение и электроток • Сопротивление • Напряжение и электроток в реальной цепи • Условный ток и поток электронов |
---|
Закон Ома |
• Закон Ома – Как напряжение, сила тока и сопротивление связаны друг с другом • Аналогия для закона Ома • Мощность в электрических цепях • Расчёт электрической мощности • Резисторы • Нелинейная проводимость • Построение цепи • Полярность перепада напряжения • Компьютерная симуляция электрических цепей |
---|
Правила электробезопасности |
• Важность правил электробезопасности • Воздействие электричества на психологическое состояние • Путь, который ток проходит перед ударом • Закон Ома (снова!) • Техника безопасности • Первая медицинская помощь при ударе током • Распространённые источники опасности • Проектирование электроцепей с учётом требований безопасности • Безопасное использование приборов для измерения электрических показателей • Данные о влиянии удара током на тело человека |
---|
Экспоненциальная запись и метрические приставки |
• Экспоненциальная запись • Арифметические операции для экспоненциальной записи • Метрические обозначения • Преобразование метрических приставок • Используем ручной калькулятор • Экспоненциальная форма в программе SPICE |
---|
Последовательные и параллельные электрические цепи |
• Что такое «последовательные» и «параллельные» электрические цепи • Простая последовательная цепь • Простая параллельная цепь • Электропроводность • Рассчитываем мощность • Правильно используем закон Ома • Анализ отказов компонентов цепи • Строим простые резистивные цепи |
---|
Схемы с делителями напряжения и правила Кирхгофа |
• Схемы с делителем напряжения • Правило напряжений Кирхгофа (ПНК) • Цепи – делители тока и формула делителя тока • Правило Кирхгофа для силы тока (ПКТ) |
---|
Комбинированные последовательно-параллельные схемы |
• Что такое последовательно-параллельная цепь • Методы анализа последовательно-параллельных резисторных цепей • Перерисовываем избыточно усложнённые схемы • Анализ отказов компонентов (продолжение) • Построение простых резисторных цепей |
---|
Измерения в электрических цепях постоянного тока |
• Что такое измеритель? • Как устроен вольтметр • Как вольтметр влияет на измеряемую цепь • Как устроен амперметр • Как амперметр влияет на измеряемую цепь • Как устроен омметр • Высоковольтный омметр • Мультиметры • Кельвиновское 4-проводное измерение сопротивления • Мостовые схемы • Как устроен ваттметр • Как самостоятельно сделать ручной калибратор |
---|
Сигналы электрического оборудования |
• Аналоговые и цифровые сигналы • Системы сигналов напряжения • Системы сигналов силы тока • Тахогенераторы • Теромопары • Измерения pH • Тензодатчики |
---|
Анализ сети постоянного тока |
• Что такое сетевой анализ? • Метод токов ветвей • Аналитический метод контурных токов • Метод узловых потенциалов • Введение в сетевые теоремы • Теорема Миллмана • Теорема о суперпозиции • Теорема Тевенена • Теорема Нортона • Эквивалентность схем Тевенена и Нортона • И вновь о теореме Миллмана • Теорема о передаче максимальной мощности • Δ-Y и Y-Δ преобразования |
---|
Батареи и системы питания |
• Поведение электронов при химических реакциях • Батарейные конструкции • Рейтинг батарей • Батареи специального назначения • Практические рекомендации при использовании батарей |
---|
Физика проводников и диэлектриков |
• Введение в физику проводников и диэлектриков • Размеры проводов• Допустимые токовые нагрузки на провода • Предохранители • Удельное сопротивление • Температурный коэффициент сопротивления • Сверхпроводимость • Пробивное напряжение диэлектрика |
---|
Конденсаторы |
• Электрическое поле и ёмкость • Конденсаторы и дифференциальное исчисление • Факторы, влияющие на ёмкость конденсатора • Последовательное и параллельное соединение конденсаторов • Практические соображения - Конденсаторы |
---|
Магнетизм и электромагнетизм |
• Постоянные магниты • Электромангетизм • Единицы измерения магнитных величин • Магнитная проницаемость и насыщение • Электромагнитная индукция • Взаимная индукция |
---|
Катушки индуктивности |
• Магнитные поля и индуктивность • Катушки индуктивности и дифференциальное исчисление • Факторы, влияющие на индуктивность • Катушки индуктивности в последовательных и параллельных соединениях • Практические соображения – Катушки индуктивности |
---|
Постоянные времени в RC и L/R цепях |
• Переходные процессы в электрических цепях • Переходные процессы в цепях с конденсатором • Переходные процессы в цепях с катушкой индуктивности • Расчёт напряжения и силы тока • Почему L/R, а не LR? • Комплексные расчёты напряжения и тока • Сложные схемы • Расчёт неизвестного времени |
---|
Переменный ток |
---|
Основы теории переменного тока |
• Что такое переменный ток? • Формы волн переменного тока • Измерение величин переменного тока • Расчёт простейшей цепи переменного тока • Фаза переменного тока • Принципы радио |
---|
Комплексные числа |
• Введение в комплексные числа • Векторы и волны переменного тока • Сложение простых векторов • Сложение сложных векторов • Полярная и алгебраическая запись комплексных чисел • Арифметика комплексных чисел • И ещё по поводу полярности переменного тока • Несколько примеров с цепями переменного тока |
---|
Реактанс и импеданс – Индуктивность |
• Резистор в цепи переменного тока (Индуктивность) • Катушка индуктивности в цепи переменного тока • Последовательные резистивно-индуктивные цепи • Параллельные резистивно-индуктивные цепи • Особенности катушек индуктивности • Что такое «скин-эффект»? |
---|
Реактанс и импеданс – Ёмкость |
• Резистор в цепи переменного тока (Ёмкость) • Конденсатор в цепи переменного тока • Последовательные резистивно-ёмкостные цепи • Параллельные резистивно-ёмкостные цепи • Особенности конденсаторов |
---|
Реактанс и импеданс – R/L/C-цепи |
• Обзор R, X и Z (сопротивление, реактанс и импеданс) • Последовательные R/L/C-цепи • Параллельные R/L/C-цепи • Последовательно-параллельные R/L/C-цепи • Реактивная проводимость и адмиттанс • R/L/C-цепи – что в итоге? |
---|
Резонанс |
• Электрический маятник • Простой параллельный резонанс (колебательный контур) • Простой последовательный резонанс • Применение резонанса • Резонанс в последовательно-параллельных цепях • Добротность и полоса пропускания резонансной цепи |
---|
Сигналы переменного тока смешанной частоты |
• Сигналы переменного тока смешанной частоты - Введение • Прямоугольные волновые сигналы • Другие волновые формы • Подробнее о спектральном анализе • Эффекты в электрических цепях |
---|
Фильтры |
• Что такое фильтр? • Низкочастотные фильтры • Высокочастотные фильтры • Полосовые фильтры • Полосно-заграждающие фильтры • Резонансные фильтры • Подводя итоги по фильтрам |
---|
Трансформаторы |
• Взаимная индуктивность и основные операции • Повышающие и понижающие трансформаторы • Электрическая изоляция • Фазировка • Конфигурации обмотки • Регулировка напряжения • Специальные трансформаторы и приложения • Практические соображения – Трансформаторы |
---|
Многофазные цепи переменного тока |
• Однофазные системы питания • Трёхфазные системы питания • Чередование фаз • Устройство многофазного двигателя • Трёхфазные Y- и дельта-конфигурации • Трёхфазные цепи с трансформатором • Гармоники в многофазных энергосистемах • Гармонические фазовые последовательности |
---|
Коэффициент мощности |
• Мощность в резистивных и реактивных цепях переменного тока • Истинная, реактивная и полная мощность • Расчёт коэффициента мощности • Практическая коррекция коэффициента мощности |
---|
Измерение цепей переменного тока |
• Вольтметры и амперметры переменного тока • Измерение частоты и фазы • Измерение мощности • Измерение качества электроэнергии • Мостовые схемы переменного тока • Измерительные преобразователи переменного тока |
---|
Двигатели переменного тока |
• Введение в двигатели переменного тока • Синхронные двигатели • Синхронный конденсатор • Двигатель с магнитным сопротивлением • Шаговые двигатели • Бесщёточный двигатель постоянного тока • Многофазные асинхронные двигатели Теслы • Асинхронные двигатели с фазным ротором • Однофазные асинхронные двигатели • Прочие специализированные двигатели • Сельсин-двигатели (синхронизированные двигатели) • Коллекторные двигатели переменного тока |
---|
Линии передачи |
• Кабель на 50 Ом? • Электрические цепи и скорость света • Характеристический импеданс • Линии передачи конечной длины • «Длинные» и «короткие» линии передачи • Стоячие волны и резонанс • Преобразование импеданса • Волноводы |
---|
Полупроводники |
---|
Усилители и активные устройства |
• От электрики к электронике • Активные и пассивные устройства • Усилители • Коэффициент усиления • Децибелы • Абсолютные дБ-шкалы • Аттенюаторы |
---|
Теория твердотельных приборов |
• Введение в теорию твердотельных устройств • Квантовая физика • Валентность и кристаллическая структура • Зонная теория твёрдых тел • Электроны и «дырки» • P-N-переход • Полупроводниковые диоды • Транзисторы с биполярным переходом • Полевые транзисторы • Полевые транзисторы с изолированным затвором (MOSFET) • Тиристоры • Методы производства полупроводников • Сверхпроводящие устройства • Квантовые устройства • Полупроводниковые приборы в SPICE |
---|
Диоды и выпрямители |
• Диоды и выпрямители – Введение • Проверка диодов мультиметром • Номинальные характеристики диодов • Схемы выпрямителей • Пиковый детектор • Схемы ограничителей напряжения • Схемы фиксаторов уровня • Умножители напряжения (удвоители, утроители, учетверители и т.д.) • Схемы коммутации индуктивных нагрузок • Диодные схемы коммутации • Что такое диод Зенера (стабилитрон)? • Диоды специального назначения • Прочие диодные технологии • Модели диодов в SPICE |
---|
Биполярные транзисторы |
• Транзисторы с биполярным переходом (ТБП) – Введение • Транзистор с биполярным переходом (ТБП) как переключатель • Проверка транзистора с биполярным переходом (ТБП) с помощью мультиметра • Активный режим работы транзистора с биполярным переходом (ТБП) • Усилительный каскад с общим эмиттером • Усилительный каскад с общим коллектором • Усилительный каскад с общей базой • Каскодный усилитель • Методы смещения для транзисторов с биполярным переходом (ТБП) • Расчёт смещения для транзисторов с биполярным переходом (ТБП) • Взаимодействие входа и выхода в транзисторах с биполярным переходом (ТБП) • Обратная связь в транзисторах с биполярным переходом (ТБП) • Импеданс усилителя • Токовые зеркала в транзисторах с биполярным переходом (ТБП) • Параметры и корпуса транзисторов с биполярным переходом (ТБП) • Особенности транзисторов с биполярным переходом (ТБП) |
---|
Полевые транзисторы |
• Полевые транзисторы (JFET) – Введение • Полевой транзистор (JFET) как переключатель • Проверка полевого транзистора (JFET) с помощью мультиметра • Активный режим работы полевого транзистора (JFET) |
---|
Полевые транзисторы с изолированным затвором |
• Полевые транзисторы с изолированным затвором – Введение • Обедняющие полевые транзисторы с изолированным затвором • Биполярные транзисторы с изолированным затвором |
---|
Тиристоры |
• Гистерезис • Газоразрядные лампы • Диод Шокли (динистор) • DIAC (симметричный динистор) • Управляемый кремниевый выпрямитель (SCR-тиристор) • TRIAC (симметричный тринистор, триак) • Оптотиристоры • Однопереходной транзистор • Управляемый кремниевый коммутатор (SCS-тиристор) • Тиристоры с полевым управлением |
---|
Операционные усилители |
• Операционные усилители (ОУ) – Введение • Несимметричные и дифференциальные усилители • «Операционный» усилитель • Отрицательная обратная связь • Делитель напряжения в цепи обратной связи • Аналогия для делителя напряжения в цепи обратной связи • Преобразование сигнала напряжения в сигнал тока • Схемы усреднителя и сумматора • Построение дифференциальных усилителей • Инструментальный (измерительный) усилитель • Схемы дифференциатора и интегратора • Положительная обратная связь • Практические аспекты ОУ • Модели операционных усилителей |
---|
Практические аналоговые полупроводниковые схемы |
• Электростатический разряд • Схемы источников питания • Схемы усилителей • Осцилляторные схемы • Радиосхемы • Вычислительные схемы • Измерительные схемы |
---|
Приводы двигателей постоянного тока |
• Широтно-импульсная модуляция |
---|
Электронные лампы |
• Электронные лампы – Введение • История электронных ламп – с чего всё началось • Триод • Тетрод • Силовой лучевой тетрод • Пентод • Комбинированные электронные лампы • Характеристики электронных ламп • Ионизированные (газовые) электронные лампы • Индикаторные электронные лампы • Микроволновые электронные лампы • Сравниваем электронные лампы и полупроводники |
---|
Цифровая электроника |
---|
Системы счисления |
• Числа и способы их выражения • Системы счисления • Сравниваем десятеричные и двоичные числа • Восьмеричная и шестнадцатеричная системы счисления • Восьмеричные и шестнадцатеричные числа преобразовываем в десятеричные • Преобразование из десятеричной системы счисления |
---|
Двоичная арифметика |
• Числа и системы счисления • Двоичное сложение • Отрицательные двоичные числа • Двоичное вычитание • Двоичное переполнение • Наборы битов |
---|
Логические вентили |
• Цифровые сигналы и вентили • Вентили «НЕ» • «Буферные» вентили • Вентили с более чем одним входом • Транзисторно-транзисторная логика вентилей «И-НЕ» и «И» • Транзисторно-транзисторная логика вентилей «ИЛИ-НЕ» и «ИЛИ» • Схемы КМОП-вентилей • Специальные выходы в вентилях • Универсальность вентилей «И-НЕ» и «ИЛИ-НЕ» • Уровни напряжения для «высоких» и «низких» логических сигналов • Вентильные DIP корпусы |
---|
Переключатели |
• Типы переключателей • Как устроены контакты переключателей • «Нормальное» состояние контакта и последовательное замыкание/размыкание • «Дребезжание» контактов |
---|
Электромеханические реле |
• Устройство реле • Контакторы • Реле с задержкой времени • Защитные реле • Твердотельные реле |
---|
Релейная логика |
• «Лестничные» диаграммы • Функции цифровой логики • Разрешающие и блокирующие схемы • Схемы управления двигателем • Отказоустойчивость • Программируемые логические контроллеры (ПЛК) |
---|
Булева алгебра |
• Булева алгебра – Введение • Логическая арифметика • Булевы алгебраические тождества • Булевы алгебраические свойства • Логические правила для упрощения • Примеры упрощения схем • Функция «Исключающее ИЛИ»: вентиль XOR • Законы де Моргана • Преобразование таблиц истинности в логические выражения |
---|
Карты Карно |
• Карты Карно – Введение • Диаграммы Венна и множества • Булевы соотношения на диаграммах Венна • Преобразование диаграмм Венна в карты Карно • Карты Карно, таблицы истинности и логические выражения • Упрощение логики с помощью карт Карно • Бо́льшие карты Карно с 4-мя переменными • Минтермы и макстермы в реализациях • Обозначения сумм и произведений • Поля «безразличия» на картах Карно • Бо́льшие карты Карно с 5-ю и 6-ю переменными |
---|
Функции комбинационной логики |
• Функции комбинационной логики – Введение • Неполный сумматор • Полный сумматор • Декодер • Кодер • Демультиплексоры • Мультиплексоры • Совместное использование множественных комбинационных схем |
---|
Мультивибраторы |
• Цифровая логика с обратной связью • SR-защёлка • Вентильная SR-защёлка • D-защёлка • Защёлки с запуском по фронту сигнала: триггеры • JK-триггер • Триггеры с асинхронными входами • Моностабильные мультивибраторы |
---|
Схемы последовательностей |
• Двоичная счётная последовательность • Асинхронные счётчики • Синхронные счётчики • Конечные автоматы |
---|
Сдвиговые регистры |
• Сдвиговые регистры – Введение • Сдвиговые регистры: последовательный вход, последовательный выход (SISO) • Сдвиговые регистры: параллельный вход, последовательный выход (PISO) • Сдвиговые регистры: последовательный вход, параллельный выход (SIPO) • Универсальные сдвиговые регистры: параллельный вход, параллельный выход (PIPO) • Кольцевые счётчики |
---|
Цифро-аналоговые и аналого-цифровые преобразования |
• Цифро-аналоговые (ЦАП) и аналого-цифровые (АЦП) преобразования – Введение • ЦАП R/2nR: цифро-аналоговый преобразователь с двоично-взвешенным входом • ЦАП R/2R: (цифро-аналоговый преобразователь) • Параллельные АЦП • Цифровые ступенчатые АЦП • АЦП с последовательным приближением • Отслеживающий АЦП • Скатные (интегрирующие) АЦП • Дельта-сигма АЦП • Практические аспекты схем АЦП |
---|
Цифровая связь |
• Цифровая связь – Введение • Сети и шины • Потоки данных • Типы электрических сигналов • Оптическая передача данных • Топология сети • Сетевые протоколы • Практические аспекты цифровой связи |
---|
Цифровое хранилище (память) |
• Почему «цифровое»? • Понятия и концепции цифровой памяти • Современная немеханическая память • Устаревшие немеханические технологии памяти • Постоянное запоминающее устройство (ПЗУ) • Память с движущимися частями: «Приводы» |
---|
Принципы цифровых вычислений |
• Двоичный сумматор • Таблицы поиска • Конечные автоматы • Микропроцессоры • Микропроцессорное программирование |
---|
Справочные материалы |
---|
Полезные уравнения и коэффициенты пересчёта |
• Уравнения и законы для цепей постоянного тока • Правила последовательных цепей • Правила параллельных цепей • Эквивалентные значения компонентов в последовательных и параллельных цепях • Уравнение ёмкости конденсатора • Уравнение катушки индуктивности • Уравнения постоянной времени • Уравнения цепей переменного тока • Уравнения для децибел • Метрические приставки и преобразования единиц измерения |
---|
Цветовая маркировка |
• Цветовая маркировка резисторов • Цветовая маркировка проводки • Инфографика цветовой маркировки проводки |
---|
Таблицы проводников и диэлектриков |
• Таблица калибров медной проволоки • Таблица допустимых нагрузок для медного провода • Коэффициенты удельного сопротивления • Таблица температурных коэффициентов сопротивления • Критические температуры для сверхпроводников • Диэлектрическая прочность изоляторов |
---|
Справочник по алгебре |
• Основные алгебраические тождества • Основные свойства арифметики • Свойства степеней • Извлечение корней • Важные константы • Логарифмы • Формулы сокращённого умножения • Квадратное уравнение • Прогрессии • Факториалы • Решение систем уравнений: метод подстановки и метод сложения |
---|
Справочник по тригонометрии |
• Тригонометрия прямоугольного треугольника • Тригонометрия произвольного треугольника • Тригонометрические формулы • Гиперболические функции |
---|
Справочник по исчислению |
• Формулы вычисления пределов • Производная числа • Общие производные • Производные показательных функций с основанием e • Производные простых тригонометрических функций • Правила вычисления производных • Первообразная (неопределённый интеграл) • Общие первообразные • Первообразные показательных функций от числа e • Правила вычисления первообразных • Определённые интегралы и основная теорема исчисления • Дифференциальные уравнения |
---|
Использование программы SPICE для моделирования электрических схем |
• Программа моделирования электрических цепей SPICE — Введение • История программы SPICE • Основы программирования в SPICE • Интерфейс командной строки • Компоненты электрических схем • Опции для проведения анализа • Странные особенности программы SPICE • Примеры электрических цепей и списков связей |
---|
Устранение неполадок – теория и практика |
• Вопросы, которые следует задать, прежде чем продолжить • Общие советы по устранению неполадок • Конкретные методы устранения неполадок • Вероятные сбои в проверенных системах • Вероятные сбои в непроверенных системах • Возможные ментальные ловушки |
---|
Схематические обозначения элементов цепи |
• Провода и соединения • Источники питания • Типы резисторов • Типы конденсаторов • Катушки индуктивности • Взаимные катушки индуктивности • Переключатели с ручным управлением • Управляемые процессом переключатели • Переключатели с электрическим приводом (реле) • Соединители • Диоды • Биполярные транзисторы • Переходные транзисторы с полевым эффектом (JFET) • Транзисторы с полевым эффектом с изолированным затвором (IGFET или MOSFET) • Гибридные транзисторы • Тиристоры • Интегральные схемы • Электронные лампы |
---|
Периодическая таблица химических элементов |
• Таблица Менделеева |
---|
Эксперименты |
---|
Введение |
• Электроника как точная наука • Обустраиваем домашнюю лабораторию |
---|
Основные концепции и испытательное оборудование |
• Использование вольтметра • Использование омметра • Очень простая схема • Использование амперметра при измерении силы тока • Закон Ома • Нелинейное сопротивление • Рассеяние мощности • Цепь с переключателем • Эксперимент по электромагнетизму • Эксперимент с электромагнитной индукцией |
---|
Электрические цепи постоянного тока |
• Электрические цепи постоянного тока – Введение • Последовательные источники питания • Параллельные источники питания • Делитель напряжения • Делитель тока • Потенциометр как делитель напряжения • Потенциометр как реостат • Прецизионный потенциометр • Ограничение диапазона реостата • Термоэлектричество • Мультиметр своими руками • Чувствительный детектор напряжения • Потенциометрический вольтметр • 4-проводное измерение сопротивления • Простейший компьютер • Картошка-батарейка • Зарядка и разрядка конденсатора • Индикатор скорости изменения |
---|
Электрические цепи переменного тока |
• Электрические цепи переменного тока – Введение • Трансформатор – блок питания • Сборка трансформатора • Переменный индуктор • Чувствительный аудиодетектор • Обнаружение магнитных полей переменного тока • Обнаружение электрических полей переменного тока • Альтернатор – автомобильный генератор • Асинхронный двигатель • Асинхронный двигатель побольше • Фазовый сдвиг • Погашение звука • Музыкальный синтезатор как генератор сигналов • ПК-осциллограф • Анализ волновых сигналов • Колебательный контур • Сигнальная связь |
---|
Дискретные полупроводниковые схемы |
• Дискретные полупроводниковые схемы – Введение • Коммутирующий диод • Полупериодный выпрямитель • Двухполупериодный мостовой выпрямитель • Двухполупериодный выпрямитель с центральным отводом • Цепь «выпрямитель/фильтр» • Регулятор напряжения • Транзистор как переключатель • Датчик статического электричества • Датчик импульсного света • Повторитель напряжения • Усилитель с общим эмиттером • Многокаскадный усилитель • Как построить схему токового зеркала • JFET – регулятор тока • Дифференциальный усилитель • Простой операционный усилитель • Аудио осциллограф • Ламповый аудио усилитель |
---|
Аналоговые интегральные схемы |
• Аналоговые интегральные схемы – Введение • Компаратор напряжения • Прецизионный повторитель напряжения • Неинвертирующий усилитель • Высокоимпедансный вольтметр • Интегратор • Аудио осциллограф на таймерной схеме 555 • Наклонный генератор на таймерной схеме 555 • ШИМ-контроллер мощности • Аудиоусилитель класса B |
---|
Цифровые интегральные схемы |
• Цифровые интегральные схемы – Введение • Основная функция вентилей • SR-защёлка на основе вентилей «ИЛИ-НЕ» • SR-защёлка на основе вентиля «И-НЕ» с входом разрешения • SR-триггер на основе вентиля «И-НЕ» • Светодиодный секвенсор • Простейший кодовый замок • 3-битный двоичный счётчик • 7-сегментный дисплей |
---|
Таймерные схемы 555 |
• Интегральный таймер 555 • Триггер Шмитта на интегральном таймере 555 • Гистерезисный осциллограф на интегральном таймере 555 • Моностабильный мультивибратор на интегральном таймере 555 • Минимальное количество комплектующих для КМОП-схемы 555 проблескового прибора длительного действия на красных светодиодах • КМОП-схема 555 проблескового прибора длительного действия на синих светодиодах • КМОП-схема 555 проблескового прибора длительного действия на светодиодах обратного хода • КМОП-схема 555 проблескового прибора длительного действия на красных светодиодах |
---|