Перевод: Макаров В. (valemak)
Проверка/Оформление/Редактирование: Мякишев Е.А.
Взаимодействие входа и выхода в транзисторах с биполярным переходом (ТБП)[1]
Чтобы преодолеть проблему создания необходимого напряжения смещения постоянного тока для входного сигнала усилителя, не прибегая к установке батареи последовательно с источником сигнала переменного тока, раннее мы использовали делитель напряжения, подключённый к источнику питания постоянного тока. Чтобы это работало вместе с входным сигналом переменного тока, мы «связали» источник сигнала с делителем через конденсатор, который действовал как фильтр верхних частот. При такой фильтрации низкое сопротивление источника сигнала переменного тока не могло «закоротить» падение постоянного напряжения на нижнем резисторе делителя напряжения. Решение простое, но не без изъянов.
Наиболее очевидным является тот факт, что использование конденсатора в качестве фильтра верхних частот для подключения источника сигнала к усилителю означает, что усилитель может только усиливать сигналы переменного тока. Неизменяемое постоянное напряжение, подаваемое на вход, блокируется разделительным конденсатором так же, как напряжение смещения делителя напряжения блокируется от входного источника. Кроме того, поскольку ёмкостное реактивное сопротивление зависит от частоты, низкочастотные сигналы переменного тока не будут усилены так сильно, как высокочастотные сигналы. Несинусоидальные сигналы склонны искажаться, поскольку конденсатор по-разному реагирует на каждую из гармоник, входящую в сигнал.
Ярким примером вышесказанного может быть низкочастотный прямоугольный сигнал:
Рис. 1. Низкочастотный прямоугольный сигнал с ёмкостной «связью» демонстрирует искажения.
Кстати, та же проблема возникает, когда входы осциллографа установлены в режим «Связь по переменному току», как показано на рисунке 2 ниже.
В этом режиме конденсатор связи расположен последовательно с измеряемым сигналом напряжения, дабы устранить любое вертикальное смещение отображаемой формы волны из-за постоянного напряжения, объединённого с сигналом. Это нормально работает, когда переменная составляющая измеряемого сигнала имеет довольно высокую частоту, а конденсатор имеет небольшой импеданс для сигнала. Однако, если сигнал имеет низкую частоту или содержит значительные уровни гармоник в широком диапазоне частот, отображение формы сигнала осциллографом не будет точным.
Низкочастотные сигналы можно просмотреть, установив осциллограф в режим «Связь по постоянному току»:
Рис. 2. При подключении по постоянному току осциллограф правильно показывает форму прямоугольной волны, исходящей от генератора сигналов.
Рис. 3. Низкая частота: при подключении по переменному току фильтрация верхних частот разделительного конденсатора искажает форму прямоугольной волны, так что то, что видно на экране осциллографа, не является точным представлением реального сигнала.
Прямая «связь»
В приложениях, где ограничения ёмкостной «связи» (с учётом рисунков выше) были бы недопустимыми, можно использовать другое решение: прямая «связь». Прямая «связь» позволяет избежать использования конденсаторов или любых других частотно-зависимых компонентов связи в пользу резисторов:
Рис. 4. Усилитель с прямой «связью»: прямое подключение к динамику.
Без конденсатора для фильтрации входного сигнала эта форма «связи» не имеет частотной зависимости. Сигналы постоянного и переменного тока одинаково усиливаются транзистором с одинаковым коэффициентом усиления (сам транзистор может усиливать одни частоты лучше, чем другие, но это совершенно другая тема!).
Если прямая «связь» работает как для сигналов постоянного, так и переменного тока, тогда зачем вообще использовать ёмкостную «связь» для чего-либо? Одна из причин может заключаться в том, чтобы избежать любого нежелательного напряжения смещения постоянного тока, естественным образом присутствующего в усиливаемом сигнале. Некоторые сигналы переменного тока могут накладываться на неконтролируемое напряжение постоянного тока прямо от источника, а неконтролируемое напряжение постоянного тока сделает надёжное смещение транзистора невозможным. Здесь хорошо работает фильтрация верхних частот, обеспечиваемая разделительным конденсатором, чтобы избежать проблем смещения.
Ещё одна причина использовать ёмкостную «связь», а не прямую – это относительное отсутствие затухания сигнала. Непосредственная «связь» через резистор имеет недостаток, заключающийся в ослаблении входного сигнала, так что только часть его достигает базы транзистора. Во многих приложениях в любом случае необходимо некоторое затухание, чтобы предотвратить «перегрузку» уровня сигнала транзистора до отсечки и насыщения, поэтому любое затухание, присущее цепи со «связью», в любом случае полезно. Тем не менее, некоторые приложения требуют, чтобы не были потерь сигнала от входного подключения к базе транзистора для максимального усиления напряжения и прямой схемы со «связью» с делителем напряжения для смещения просто не хватает.
До сих пор мы обсуждали несколько методов подключения входного сигнала к усилителю, но не рассмотрели вопрос подключения выхода усилителя к нагрузке. Пример схемы, используемый для иллюстрации входной «связи», будет хорошо служить для иллюстрации проблем, связанных с выходной «связью».
В нашей примерной схеме нагрузкой является динамик. Большинство динамиков имеют электромагнитную конструкцию: то есть они используют силу, создаваемую легкой катушкой электромагнита, подвешенной в сильном поле постоянного магнита, для перемещения тонкого бумажного или пластикового конуса, создавая колебания в воздухе, которые наши уши интерпретируют как звук. Приложенное напряжение одной полярности перемещает конус наружу, а напряжение противоположной полярности перемещает конус внутрь. Чтобы использовать полную свободу движения диффузора, динамик должен получать истинное (несмещённое) переменное напряжение. Смещение постоянного тока, приложенное к катушке динамика, смещает конус от его естественного центрального положения, и это ограничивает возвратно-поступательное движение, которое он может выдерживать из-за приложенного напряжения переменного тока без чрезмерного перемещения. Однако в нашей примерной схеме к динамику применяется переменное напряжение только одной полярности, потому что динамик подключён последовательно с транзистором, который может проводить ток только в одном направлении. Это неприемлемо для любого мощного аудиоусилителя.
Как-то нам нужно изолировать динамик от постоянного тока смещения коллектора, чтобы он получал только переменное напряжение. Одним из способов достижения этой цели является соединение цепи коллектора транзистора с динамиком через трансформатор:
Рис. 5. Трансформаторная муфта изолирует постоянный ток от нагрузки (динамика).
Напряжение, индуцированное во вторичной обмотке (на стороне динамика) трансформатора, будет строго обусловлено изменениями тока коллектора, поскольку взаимная индуктивность трансформатора влияет только на изменения тока обмотки. Другими словами, только часть переменного тока сигнала тока коллектора будет подключена к вторичной обмотке для питания динамика. Громкоговоритель будет «видеть» истинный переменный ток на своих выводах без какого-либо смещения постоянного тока.
«Связь» на выходе трансформатора работает и имеет дополнительное преимущество, заключающееся в возможности обеспечить согласование импеданса между схемой транзистора и катушкой динамика с настраиваемыми соотношениями обмоток. Однако трансформаторы обычно бывают большими и тяжёлыми, особенно для мощных приложений. Кроме того, сложно спроектировать трансформатор для обработки сигналов в широком диапазоне частот, что почти всегда требуется для аудиоприложений. Что ещё хуже, постоянный ток через первичную обмотку увеличивает намагничивание сердечника только при одной полярности, что приводит к более легкому насыщению сердечника трансформатора в одном цикле полярности переменного тока, чем в другом. Эта проблема напоминает прямое последовательное соединение динамика с транзистором: постоянный ток смещения ограничивает амплитуду выходного сигнала, с которой система может справиться без искажений. Однако, как правило, трансформатор может быть спроектирован так, чтобы выдерживать без проблем гораздо больший постоянный ток смещения, чем динамик, поэтому в большинстве случаев трансформаторное соединение по-прежнему является жизнеспособным решением. См. раздел «Трансформатор связи» между Q4 и динамиком, в главе 9 как пример трансформаторной «связи».
Другой способ изолировать динамик от смещения постоянного тока в выходном сигнале – немного изменить саму схему и использовать разделительный конденсатор аналогично подключению входного сигнала к усилителю:
Рис. 6. Конденсаторная муфта изолирует постоянный ток от нагрузки.
Эта схема на рисунке выше напоминает более традиционную форму усилителя с общим эмиттером, в котором коллектор транзистора подключён к батарее через резистор. Конденсатор действует как фильтр верхних частот, пропуская бо́льшую часть переменного напряжения в динамик, блокируя все постоянное напряжение. Опять же, номинал этого разделительного конденсатора выбирается так, чтобы его полное сопротивление на ожидаемой частоте сигнала было произвольно низким.
Блокировка постоянного напряжения на выходе усилителя, будь то через трансформатор или конденсатор, полезна не только для подключения усилителя к нагрузке, но также для подключения одного усилителя к другому усилителю. «Ступенчатые» усилители часто используются для достижения более высокого усиления мощности, чем то, что было бы возможно при использовании одного транзистора:
Рис. 7. Трехкаскадный усилитель с общим эмиттером с конденсаторной «связью».
Хотя можно напрямую соединить каждый каскад со следующим (через резистор, а не конденсатор), это делает весь усилитель очень чувствительным к изменениям напряжения смещения постоянного тока первого каскада, поскольку это напряжение постоянного тока будет усиливаться вместе с сигналом переменного тока до последней ступени. Другими словами, смещение первой ступени повлияет на смещение второй ступени и так далее. Однако, если каскады имеют ёмкостную «связь», показанную на приведённом выше рисунке 7, смещение одного каскада не влияет на смещение следующего, потому что постоянное напряжение не может передаваться на следующий каскад.
Трансформаторная «связь» между каскадами усилителя также возможна, но встречается реже из-за некоторых проблем, присущих трансформаторам, о чём упоминалось выше. Одно заметное исключение из этого правила – усилители радиочастоты (рисунок 8 ниже) с небольшими трансформаторами связи, имеющими воздушные сердечники (что делает их невосприимчивыми к эффектам насыщения), которые являются частью резонансного контура, блокирующего передачу нежелательных гармонических частот на последующие этапы. Использование резонансных схем предполагает, что частота сигнала остаётся постоянной, что типично для радиосхем. Кроме того, эффект «маховика» в колебательных LC-контурах обеспечивает работу класса C с высокой эффективностью.
Рис. 8. Трёхкаскадный настроенный РЧ-усилитель иллюстрирует трансформаторную «связь».
Обратите внимание на трансформаторную «связь» между транзисторами Q1, Q2, Q3 и Q4 в схеме Regency TR1 из главы 9. Три трансформатора промежуточной частоты (ПЧ) в пунктирных прямоугольниках передают сигнал ПЧ от коллектора к базе следующих транзисторных усилителей ПЧ. Усилители промежуточной частоты – радиочастотные, хотя это уже будут другие частоты, чем РЧ на входе антенны.
С учётом вышесказанного, необходимо отметить, что можно использовать прямую «связь» внутри транзистора в схемах многоступенчатых усилителей. В случаях, когда ожидается, что усилитель будет обрабатывать сигналы постоянного тока, другой альтернативы нет.
Тенденция современной электроники к более широкому использованию интегральных схем (ИС) стимулирует использование прямой «связи» вместо трансформаторной или конденсаторной. Единственный простой в изготовлении компонент интегральной схемы – это транзистор. Также могут изготавливаться резисторы среднего качества. Хотя предпочтение отдаётся транзисторам. Возможно также использование встроенных конденсаторов до нескольких десятков пФ. Конденсаторы большой ёмкости не интегрируются. При необходимости это могут быть разве что внешние компоненты. То же самое и с трансформаторами. Поскольку интегрированные транзисторы недороги, как можно больше транзисторов заменяют неисправные конденсаторы и трансформаторы. В ИС между внешними компонентами связи заложено максимально возможное усиление с прямой «связью». Хотя используются внешние конденсаторы и трансформаторы, они даже проектируются, если это возможно. В результате современное IC радио (про него см. в главе 9) совсем не похоже на оригинальную 4-транзисторную магнитолу.
Даже дискретные транзисторы стоят недорого по сравнению с трансформаторами. Громоздкие преобразователи аудио можно заменить на транзисторы. Например, конфигурация с общим коллектором (эмиттерным повторителем) может соответствовать сопротивлению низкого выходного сопротивления, как у динамика. Также возможно заменить большие конденсаторы «связи» транзисторной схемой.
Мы по-прежнему любим иллюстрировать тексты с помощью усилителей звука с трансформаторной «связью». Эти схемы просты. Количество компонентов невелико. И это хорошие вводные схемы – их легко понять даже новичку.
Схема на рисунке 9.а ниже представляет собой упрощённый двухтактный аудиоусилитель с трансформаторной «связью». В двухтактном режиме пара транзисторов попеременно усиливает положительную и отрицательную части входного сигнала. Ни один из транзисторов не проводит ток при отсутствии входного сигнала. Положительный входной сигнал будет положительным в верхней части вторичной обмотки трансформатора, заставляя верхний транзистор проводить. Отрицательный вход будет давать положительный сигнал в нижней части вторичной обмотки, переводя нижний транзистор в состояние проводимости. Таким образом, транзисторы усиливают чередующиеся половины сигнала. Как показано, ни один из транзисторов на рисунке 9.а ниже не будет проводить для входного сигнала ниже 0,7 В (на пике). Практическая схема соединяет центральный отвод вторичной обмотки с резистивным делителем на 0,7 В (или больше) вместо «земли» для смещения обоих транзисторов класса B.
Рис. 9. (а) Двухтактный усилитель с трансформаторной «связью». (б) Усилитель на комплементарной паре с прямой «связью» заменяет трансформаторы на транзисторы.
Схема на рисунке 9.б выше является современной версией, в которой функции трансформатора выполняют транзисторы. Транзисторы Q1 и Q2 представляют собой усилители с общим эмиттером, инвертирующие сигнал с усилением от базы к коллектору. Транзисторы Q3 и Q4 известны как комплементарная пара. А всё потому, что эти NPN и PNP транзисторы усиливают чередующиеся половины (положительную и отрицательную соответственно) волны сигнала. Параллельное соединение оснований позволяет разделить фазы без входного трансформатора в точке (рис. 9.а). Динамик является эмиттерной нагрузкой для Q3 и Q4. Параллельное соединение эмиттеров NPN и PNP транзисторов устраняет необходимость в выходном трансформаторе с центральным отводом в точке (рис. 9.a). Низкое выходное сопротивление эмиттерного повторителя служит для согласования низкого импеданса динамика 8 Ом с предыдущим каскадом с общим эмиттером. Таким образом, недорогие транзисторы заменяют трансформаторы. Полную схему см. в теме «Усилитель звука с прямой комплементарной симметрией мощностью 3 Вт», глава 9.
Итог
- Ёмкостная «связь» действует как фильтр верхних частот на входе усилителя. Это приводит к уменьшению коэффициента усиления по напряжению усилителя при более низких частотах сигнала. Усилители с ёмкостной «связью» практически не реагируют на входные сигналы постоянного тока.
- Прямая «связь» с последовательным резистором вместо последовательного конденсатора позволяет избежать проблемы частотно-зависимого усиления, но имеет недостаток, заключающийся в уменьшении усиления усилителя для всех частот сигнала за счёт ослабления входного сигнала.
- Трансформаторы и конденсаторы могут использоваться для подключения выхода усилителя к нагрузке, чтобы исключить попадание постоянного напряжения на нагрузку.
- Многокаскадные усилители часто используют ёмкостную «связь» между каскадами, чтобы устранить проблемы с смещением одного каскада, влияющим на смещение другого.
См.также
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|
Внешние ссылки
Теория по электронике |
---|
Постоянный ток |
---|
Основные концепты электричества |
• Статическое электричество • Проводники, диэлектрики и поток электронов • Что такое электрические цепи? • Напряжение и электроток • Сопротивление • Напряжение и электроток в реальной цепи • Условный ток и поток электронов |
---|
Закон Ома |
• Закон Ома – Как напряжение, сила тока и сопротивление связаны друг с другом • Аналогия для закона Ома • Мощность в электрических цепях • Расчёт электрической мощности • Резисторы • Нелинейная проводимость • Построение цепи • Полярность перепада напряжения • Компьютерная симуляция электрических цепей |
---|
Правила электробезопасности |
• Важность правил электробезопасности • Воздействие электричества на психологическое состояние • Путь, который ток проходит перед ударом • Закон Ома (снова!) • Техника безопасности • Первая медицинская помощь при ударе током • Распространённые источники опасности • Проектирование электроцепей с учётом требований безопасности • Безопасное использование приборов для измерения электрических показателей • Данные о влиянии удара током на тело человека |
---|
Экспоненциальная запись и метрические приставки |
• Экспоненциальная запись • Арифметические операции для экспоненциальной записи • Метрические обозначения • Преобразование метрических приставок • Используем ручной калькулятор • Экспоненциальная форма в программе SPICE |
---|
Последовательные и параллельные электрические цепи |
• Что такое «последовательные» и «параллельные» электрические цепи • Простая последовательная цепь • Простая параллельная цепь • Электропроводность • Рассчитываем мощность • Правильно используем закон Ома • Анализ отказов компонентов цепи • Строим простые резистивные цепи |
---|
Схемы с делителями напряжения и правила Кирхгофа |
• Схемы с делителем напряжения • Правило напряжений Кирхгофа (ПНК) • Цепи – делители тока и формула делителя тока • Правило Кирхгофа для силы тока (ПКТ) |
---|
Комбинированные последовательно-параллельные схемы |
• Что такое последовательно-параллельная цепь • Методы анализа последовательно-параллельных резисторных цепей • Перерисовываем избыточно усложнённые схемы • Анализ отказов компонентов (продолжение) • Построение простых резисторных цепей |
---|
Измерения в электрических цепях постоянного тока |
• Что такое измеритель? • Как устроен вольтметр • Как вольтметр влияет на измеряемую цепь • Как устроен амперметр • Как амперметр влияет на измеряемую цепь • Как устроен омметр • Высоковольтный омметр • Мультиметры • Кельвиновское 4-проводное измерение сопротивления • Мостовые схемы • Как устроен ваттметр • Как самостоятельно сделать ручной калибратор |
---|
Сигналы электрического оборудования |
• Аналоговые и цифровые сигналы • Системы сигналов напряжения • Системы сигналов силы тока • Тахогенераторы • Теромопары • Измерения pH • Тензодатчики |
---|
Анализ сети постоянного тока |
• Что такое сетевой анализ? • Метод токов ветвей • Аналитический метод контурных токов • Метод узловых потенциалов • Введение в сетевые теоремы • Теорема Миллмана • Теорема о суперпозиции • Теорема Тевенена • Теорема Нортона • Эквивалентность схем Тевенена и Нортона • И вновь о теореме Миллмана • Теорема о передаче максимальной мощности • Δ-Y и Y-Δ преобразования |
---|
Батареи и системы питания |
• Поведение электронов при химических реакциях • Батарейные конструкции • Рейтинг батарей • Батареи специального назначения • Практические рекомендации при использовании батарей |
---|
Физика проводников и диэлектриков |
• Введение в физику проводников и диэлектриков • Размеры проводов• Допустимые токовые нагрузки на провода • Предохранители • Удельное сопротивление • Температурный коэффициент сопротивления • Сверхпроводимость • Пробивное напряжение диэлектрика |
---|
Конденсаторы |
• Электрическое поле и ёмкость • Конденсаторы и дифференциальное исчисление • Факторы, влияющие на ёмкость конденсатора • Последовательное и параллельное соединение конденсаторов • Практические соображения - Конденсаторы |
---|
Магнетизм и электромагнетизм |
• Постоянные магниты • Электромангетизм • Единицы измерения магнитных величин • Магнитная проницаемость и насыщение • Электромагнитная индукция • Взаимная индукция |
---|
Катушки индуктивности |
• Магнитные поля и индуктивность • Катушки индуктивности и дифференциальное исчисление • Факторы, влияющие на индуктивность • Катушки индуктивности в последовательных и параллельных соединениях • Практические соображения – Катушки индуктивности |
---|
Постоянные времени в RC и L/R цепях |
• Переходные процессы в электрических цепях • Переходные процессы в цепях с конденсатором • Переходные процессы в цепях с катушкой индуктивности • Расчёт напряжения и силы тока • Почему L/R, а не LR? • Комплексные расчёты напряжения и тока • Сложные схемы • Расчёт неизвестного времени |
---|
Переменный ток |
---|
Основы теории переменного тока |
• Что такое переменный ток? • Формы волн переменного тока • Измерение величин переменного тока • Расчёт простейшей цепи переменного тока • Фаза переменного тока • Принципы радио |
---|
Комплексные числа |
• Введение в комплексные числа • Векторы и волны переменного тока • Сложение простых векторов • Сложение сложных векторов • Полярная и алгебраическая запись комплексных чисел • Арифметика комплексных чисел • И ещё по поводу полярности переменного тока • Несколько примеров с цепями переменного тока |
---|
Реактанс и импеданс – Индуктивность |
• Резистор в цепи переменного тока (Индуктивность) • Катушка индуктивности в цепи переменного тока • Последовательные резистивно-индуктивные цепи • Параллельные резистивно-индуктивные цепи • Особенности катушек индуктивности • Что такое «скин-эффект»? |
---|
Реактанс и импеданс – Ёмкость |
• Резистор в цепи переменного тока (Ёмкость) • Конденсатор в цепи переменного тока • Последовательные резистивно-ёмкостные цепи • Параллельные резистивно-ёмкостные цепи • Особенности конденсаторов |
---|
Реактанс и импеданс – R/L/C-цепи |
• Обзор R, X и Z (сопротивление, реактанс и импеданс) • Последовательные R/L/C-цепи • Параллельные R/L/C-цепи • Последовательно-параллельные R/L/C-цепи • Реактивная проводимость и адмиттанс • R/L/C-цепи – что в итоге? |
---|
Резонанс |
• Электрический маятник • Простой параллельный резонанс (колебательный контур) • Простой последовательный резонанс • Применение резонанса • Резонанс в последовательно-параллельных цепях • Добротность и полоса пропускания резонансной цепи |
---|
Сигналы переменного тока смешанной частоты |
• Сигналы переменного тока смешанной частоты - Введение • Прямоугольные волновые сигналы • Другие волновые формы • Подробнее о спектральном анализе • Эффекты в электрических цепях |
---|
Фильтры |
• Что такое фильтр? • Низкочастотные фильтры • Высокочастотные фильтры • Полосовые фильтры • Полосно-заграждающие фильтры • Резонансные фильтры • Подводя итоги по фильтрам |
---|
Трансформаторы |
• Взаимная индуктивность и основные операции • Повышающие и понижающие трансформаторы • Электрическая изоляция • Фазировка • Конфигурации обмотки • Регулировка напряжения • Специальные трансформаторы и приложения • Практические соображения – Трансформаторы |
---|
Многофазные цепи переменного тока |
• Однофазные системы питания • Трёхфазные системы питания • Чередование фаз • Устройство многофазного двигателя • Трёхфазные Y- и дельта-конфигурации • Трёхфазные цепи с трансформатором • Гармоники в многофазных энергосистемах • Гармонические фазовые последовательности |
---|
Коэффициент мощности |
• Мощность в резистивных и реактивных цепях переменного тока • Истинная, реактивная и полная мощность • Расчёт коэффициента мощности • Практическая коррекция коэффициента мощности |
---|
Измерение цепей переменного тока |
• Вольтметры и амперметры переменного тока • Измерение частоты и фазы • Измерение мощности • Измерение качества электроэнергии • Мостовые схемы переменного тока • Измерительные преобразователи переменного тока |
---|
Двигатели переменного тока |
• Введение в двигатели переменного тока • Синхронные двигатели • Синхронный конденсатор • Двигатель с магнитным сопротивлением • Шаговые двигатели • Бесщёточный двигатель постоянного тока • Многофазные асинхронные двигатели Теслы • Асинхронные двигатели с фазным ротором • Однофазные асинхронные двигатели • Прочие специализированные двигатели • Сельсин-двигатели (синхронизированные двигатели) • Коллекторные двигатели переменного тока |
---|
Линии передачи |
• Кабель на 50 Ом? • Электрические цепи и скорость света • Характеристический импеданс • Линии передачи конечной длины • «Длинные» и «короткие» линии передачи • Стоячие волны и резонанс • Преобразование импеданса • Волноводы |
---|
Полупроводники |
---|
Усилители и активные устройства |
• От электрики к электронике • Активные и пассивные устройства • Усилители • Коэффициент усиления • Децибелы • Абсолютные дБ-шкалы • Аттенюаторы |
---|
Теория твердотельных приборов |
• Введение в теорию твердотельных устройств • Квантовая физика • Валентность и кристаллическая структура • Зонная теория твёрдых тел • Электроны и «дырки» • P-N-переход • Полупроводниковые диоды • Транзисторы с биполярным переходом • Полевые транзисторы • Полевые транзисторы с изолированным затвором (MOSFET) • Тиристоры • Методы производства полупроводников • Сверхпроводящие устройства • Квантовые устройства • Полупроводниковые приборы в SPICE |
---|
Диоды и выпрямители |
• Диоды и выпрямители – Введение • Проверка диодов мультиметром • Номинальные характеристики диодов • Схемы выпрямителей • Пиковый детектор • Схемы ограничителей напряжения • Схемы фиксаторов уровня • Умножители напряжения (удвоители, утроители, учетверители и т.д.) • Схемы коммутации индуктивных нагрузок • Диодные схемы коммутации • Что такое диод Зенера (стабилитрон)? • Диоды специального назначения • Прочие диодные технологии • Модели диодов в SPICE |
---|
Биполярные транзисторы |
• Транзисторы с биполярным переходом (ТБП) – Введение • Транзистор с биполярным переходом (ТБП) как переключатель • Проверка транзистора с биполярным переходом (ТБП) с помощью мультиметра • Активный режим работы транзистора с биполярным переходом (ТБП) • Усилительный каскад с общим эмиттером • Усилительный каскад с общим коллектором • Усилительный каскад с общей базой • Каскодный усилитель • Методы смещения для транзисторов с биполярным переходом (ТБП) • Расчёт смещения для транзисторов с биполярным переходом (ТБП) • Взаимодействие входа и выхода в транзисторах с биполярным переходом (ТБП) • Обратная связь в транзисторах с биполярным переходом (ТБП) • Импеданс усилителя • Токовые зеркала в транзисторах с биполярным переходом (ТБП) • Параметры и корпуса транзисторов с биполярным переходом (ТБП) • Особенности транзисторов с биполярным переходом (ТБП) |
---|
Полевые транзисторы |
• Полевые транзисторы (JFET) – Введение • Полевой транзистор (JFET) как переключатель • Проверка полевого транзистора (JFET) с помощью мультиметра • Активный режим работы полевого транзистора (JFET) |
---|
Полевые транзисторы с изолированным затвором |
• Полевые транзисторы с изолированным затвором – Введение • Обедняющие полевые транзисторы с изолированным затвором • Биполярные транзисторы с изолированным затвором |
---|
Тиристоры |
• Гистерезис • Газоразрядные лампы • Диод Шокли (динистор) • DIAC (симметричный динистор) • Управляемый кремниевый выпрямитель (SCR-тиристор) • TRIAC (симметричный тринистор, триак) • Оптотиристоры • Однопереходной транзистор • Управляемый кремниевый коммутатор (SCS-тиристор) • Тиристоры с полевым управлением |
---|
Операционные усилители |
• Операционные усилители (ОУ) – Введение • Несимметричные и дифференциальные усилители • «Операционный» усилитель • Отрицательная обратная связь • Делитель напряжения в цепи обратной связи • Аналогия для делителя напряжения в цепи обратной связи • Преобразование сигнала напряжения в сигнал тока • Схемы усреднителя и сумматора • Построение дифференциальных усилителей • Инструментальный (измерительный) усилитель • Схемы дифференциатора и интегратора • Положительная обратная связь • Практические аспекты ОУ • Модели операционных усилителей |
---|
Практические аналоговые полупроводниковые схемы |
• Электростатический разряд • Схемы источников питания • Схемы усилителей • Осцилляторные схемы • Радиосхемы • Вычислительные схемы • Измерительные схемы |
---|
Приводы двигателей постоянного тока |
• Широтно-импульсная модуляция |
---|
Электронные лампы |
• Электронные лампы – Введение • История электронных ламп – с чего всё началось • Триод • Тетрод • Силовой лучевой тетрод • Пентод • Комбинированные электронные лампы • Характеристики электронных ламп • Ионизированные (газовые) электронные лампы • Индикаторные электронные лампы • Микроволновые электронные лампы • Сравниваем электронные лампы и полупроводники |
---|
Цифровая электроника |
---|
Системы счисления |
• Числа и способы их выражения • Системы счисления • Сравниваем десятеричные и двоичные числа • Восьмеричная и шестнадцатеричная системы счисления • Восьмеричные и шестнадцатеричные числа преобразовываем в десятеричные • Преобразование из десятеричной системы счисления |
---|
Двоичная арифметика |
• Числа и системы счисления • Двоичное сложение • Отрицательные двоичные числа • Двоичное вычитание • Двоичное переполнение • Наборы битов |
---|
Логические вентили |
• Цифровые сигналы и вентили • Вентили «НЕ» • «Буферные» вентили • Вентили с более чем одним входом • Транзисторно-транзисторная логика вентилей «И-НЕ» и «И» • Транзисторно-транзисторная логика вентилей «ИЛИ-НЕ» и «ИЛИ» • Схемы КМОП-вентилей • Специальные выходы в вентилях • Универсальность вентилей «И-НЕ» и «ИЛИ-НЕ» • Уровни напряжения для «высоких» и «низких» логических сигналов • Вентильные DIP корпусы |
---|
Переключатели |
• Типы переключателей • Как устроены контакты переключателей • «Нормальное» состояние контакта и последовательное замыкание/размыкание • «Дребезжание» контактов |
---|
Электромеханические реле |
• Устройство реле • Контакторы • Реле с задержкой времени • Защитные реле • Твердотельные реле |
---|
Релейная логика |
• «Лестничные» диаграммы • Функции цифровой логики • Разрешающие и блокирующие схемы • Схемы управления двигателем • Отказоустойчивость • Программируемые логические контроллеры (ПЛК) |
---|
Булева алгебра |
• Булева алгебра – Введение • Логическая арифметика • Булевы алгебраические тождества • Булевы алгебраические свойства • Логические правила для упрощения • Примеры упрощения схем • Функция «Исключающее ИЛИ»: вентиль XOR • Законы де Моргана • Преобразование таблиц истинности в логические выражения |
---|
Карты Карно |
• Карты Карно – Введение • Диаграммы Венна и множества • Булевы соотношения на диаграммах Венна • Преобразование диаграмм Венна в карты Карно • Карты Карно, таблицы истинности и логические выражения • Упрощение логики с помощью карт Карно • Бо́льшие карты Карно с 4-мя переменными • Минтермы и макстермы в реализациях • Обозначения сумм и произведений • Поля «безразличия» на картах Карно • Бо́льшие карты Карно с 5-ю и 6-ю переменными |
---|
Функции комбинационной логики |
• Функции комбинационной логики – Введение • Неполный сумматор • Полный сумматор • Декодер • Кодер • Демультиплексоры • Мультиплексоры • Совместное использование множественных комбинационных схем |
---|
Мультивибраторы |
• Цифровая логика с обратной связью • SR-защёлка • Вентильная SR-защёлка • D-защёлка • Защёлки с запуском по фронту сигнала: триггеры • JK-триггер • Триггеры с асинхронными входами • Моностабильные мультивибраторы |
---|
Схемы последовательностей |
• Двоичная счётная последовательность • Асинхронные счётчики • Синхронные счётчики • Конечные автоматы |
---|
Сдвиговые регистры |
• Сдвиговые регистры – Введение • Сдвиговые регистры: последовательный вход, последовательный выход (SISO) • Сдвиговые регистры: параллельный вход, последовательный выход (PISO) • Сдвиговые регистры: последовательный вход, параллельный выход (SIPO) • Универсальные сдвиговые регистры: параллельный вход, параллельный выход (PIPO) • Кольцевые счётчики |
---|
Цифро-аналоговые и аналого-цифровые преобразования |
• Цифро-аналоговые (ЦАП) и аналого-цифровые (АЦП) преобразования – Введение • ЦАП R/2nR: цифро-аналоговый преобразователь с двоично-взвешенным входом • ЦАП R/2R: (цифро-аналоговый преобразователь) • Параллельные АЦП • Цифровые ступенчатые АЦП • АЦП с последовательным приближением • Отслеживающий АЦП • Скатные (интегрирующие) АЦП • Дельта-сигма АЦП • Практические аспекты схем АЦП |
---|
Цифровая связь |
• Цифровая связь – Введение • Сети и шины • Потоки данных • Типы электрических сигналов • Оптическая передача данных • Топология сети • Сетевые протоколы • Практические аспекты цифровой связи |
---|
Цифровое хранилище (память) |
• Почему «цифровое»? • Понятия и концепции цифровой памяти • Современная немеханическая память • Устаревшие немеханические технологии памяти • Постоянное запоминающее устройство (ПЗУ) • Память с движущимися частями: «Приводы» |
---|
Принципы цифровых вычислений |
• Двоичный сумматор • Таблицы поиска • Конечные автоматы • Микропроцессоры • Микропроцессорное программирование |
---|
Справочные материалы |
---|
Полезные уравнения и коэффициенты пересчёта |
• Уравнения и законы для цепей постоянного тока • Правила последовательных цепей • Правила параллельных цепей • Эквивалентные значения компонентов в последовательных и параллельных цепях • Уравнение ёмкости конденсатора • Уравнение катушки индуктивности • Уравнения постоянной времени • Уравнения цепей переменного тока • Уравнения для децибел • Метрические приставки и преобразования единиц измерения |
---|
Цветовая маркировка |
• Цветовая маркировка резисторов • Цветовая маркировка проводки • Инфографика цветовой маркировки проводки |
---|
Таблицы проводников и диэлектриков |
• Таблица калибров медной проволоки • Таблица допустимых нагрузок для медного провода • Коэффициенты удельного сопротивления • Таблица температурных коэффициентов сопротивления • Критические температуры для сверхпроводников • Диэлектрическая прочность изоляторов |
---|
Справочник по алгебре |
• Основные алгебраические тождества • Основные свойства арифметики • Свойства степеней • Извлечение корней • Важные константы • Логарифмы • Формулы сокращённого умножения • Квадратное уравнение • Прогрессии • Факториалы • Решение систем уравнений: метод подстановки и метод сложения |
---|
Справочник по тригонометрии |
• Тригонометрия прямоугольного треугольника • Тригонометрия произвольного треугольника • Тригонометрические формулы • Гиперболические функции |
---|
Справочник по исчислению |
• Формулы вычисления пределов • Производная числа • Общие производные • Производные показательных функций с основанием e • Производные простых тригонометрических функций • Правила вычисления производных • Первообразная (неопределённый интеграл) • Общие первообразные • Первообразные показательных функций от числа e • Правила вычисления первообразных • Определённые интегралы и основная теорема исчисления • Дифференциальные уравнения |
---|
Использование программы SPICE для моделирования электрических схем |
• Программа моделирования электрических цепей SPICE — Введение • История программы SPICE • Основы программирования в SPICE • Интерфейс командной строки • Компоненты электрических схем • Опции для проведения анализа • Странные особенности программы SPICE • Примеры электрических цепей и списков связей |
---|
Устранение неполадок – теория и практика |
• Вопросы, которые следует задать, прежде чем продолжить • Общие советы по устранению неполадок • Конкретные методы устранения неполадок • Вероятные сбои в проверенных системах • Вероятные сбои в непроверенных системах • Возможные ментальные ловушки |
---|
Схематические обозначения элементов цепи |
• Провода и соединения • Источники питания • Типы резисторов • Типы конденсаторов • Катушки индуктивности • Взаимные катушки индуктивности • Переключатели с ручным управлением • Управляемые процессом переключатели • Переключатели с электрическим приводом (реле) • Соединители • Диоды • Биполярные транзисторы • Переходные транзисторы с полевым эффектом (JFET) • Транзисторы с полевым эффектом с изолированным затвором (IGFET или MOSFET) • Гибридные транзисторы • Тиристоры • Интегральные схемы • Электронные лампы |
---|
Периодическая таблица химических элементов |
• Таблица Менделеева |
---|
Эксперименты |
---|
Введение |
• Электроника как точная наука • Обустраиваем домашнюю лабораторию |
---|
Основные концепции и испытательное оборудование |
• Использование вольтметра • Использование омметра • Очень простая схема • Использование амперметра при измерении силы тока • Закон Ома • Нелинейное сопротивление • Рассеяние мощности • Цепь с переключателем • Эксперимент по электромагнетизму • Эксперимент с электромагнитной индукцией |
---|
Электрические цепи постоянного тока |
• Электрические цепи постоянного тока – Введение • Последовательные источники питания • Параллельные источники питания • Делитель напряжения • Делитель тока • Потенциометр как делитель напряжения • Потенциометр как реостат • Прецизионный потенциометр • Ограничение диапазона реостата • Термоэлектричество • Мультиметр своими руками • Чувствительный детектор напряжения • Потенциометрический вольтметр • 4-проводное измерение сопротивления • Простейший компьютер • Картошка-батарейка • Зарядка и разрядка конденсатора • Индикатор скорости изменения |
---|
Электрические цепи переменного тока |
• Электрические цепи переменного тока – Введение • Трансформатор – блок питания • Сборка трансформатора • Переменный индуктор • Чувствительный аудиодетектор • Обнаружение магнитных полей переменного тока • Обнаружение электрических полей переменного тока • Альтернатор – автомобильный генератор • Асинхронный двигатель • Асинхронный двигатель побольше • Фазовый сдвиг • Погашение звука • Музыкальный синтезатор как генератор сигналов • ПК-осциллограф • Анализ волновых сигналов • Колебательный контур • Сигнальная связь |
---|
Дискретные полупроводниковые схемы |
• Дискретные полупроводниковые схемы – Введение • Коммутирующий диод • Полупериодный выпрямитель • Двухполупериодный мостовой выпрямитель • Двухполупериодный выпрямитель с центральным отводом • Цепь «выпрямитель/фильтр» • Регулятор напряжения • Транзистор как переключатель • Датчик статического электричества • Датчик импульсного света • Повторитель напряжения • Усилитель с общим эмиттером • Многокаскадный усилитель • Как построить схему токового зеркала • JFET – регулятор тока • Дифференциальный усилитель • Простой операционный усилитель • Аудио осциллограф • Ламповый аудио усилитель |
---|
Аналоговые интегральные схемы |
• Аналоговые интегральные схемы – Введение • Компаратор напряжения • Прецизионный повторитель напряжения • Неинвертирующий усилитель • Высокоимпедансный вольтметр • Интегратор • Аудио осциллограф на таймерной схеме 555 • Наклонный генератор на таймерной схеме 555 • ШИМ-контроллер мощности • Аудиоусилитель класса B |
---|
Цифровые интегральные схемы |
• Цифровые интегральные схемы – Введение • Основная функция вентилей • SR-защёлка на основе вентилей «ИЛИ-НЕ» • SR-защёлка на основе вентиля «И-НЕ» с входом разрешения • SR-триггер на основе вентиля «И-НЕ» • Светодиодный секвенсор • Простейший кодовый замок • 3-битный двоичный счётчик • 7-сегментный дисплей |
---|
Таймерные схемы 555 |
• Интегральный таймер 555 • Триггер Шмитта на интегральном таймере 555 • Гистерезисный осциллограф на интегральном таймере 555 • Моностабильный мультивибратор на интегральном таймере 555 • Минимальное количество комплектующих для КМОП-схемы 555 проблескового прибора длительного действия на красных светодиодах • КМОП-схема 555 проблескового прибора длительного действия на синих светодиодах • КМОП-схема 555 проблескового прибора длительного действия на светодиодах обратного хода • КМОП-схема 555 проблескового прибора длительного действия на красных светодиодах |
---|