Перевод: Макаров В. (valemak)
Проверка/Оформление/Редактирование: Мякишев Е.А.
Обратная связь в транзисторах с биполярным переходом (ТБП)[1]
Если некоторый процент выходного сигнала усилителя подключён к входу (тогда получается, что усилитель усиливает часть своего выходного сигнала), мы имеем так называемую обратную связь.
Виды обратной связи
Обратная связь бывает двух видов: положительная (также называемая регенеративная обратная связь) и отрицательная (также называемая дегенеративная обратная связь).
Положительная обратная связь
Усиливает направление изменения выходного напряжения усилителя, в то время как отрицательная обратная связь делает прямо противоположное.
Всем хорошо знакомый пример обратной связи происходит в системах громкой связи – когда кто-то держит микрофон слишком близко к колонке, транслирующей звук с этого же микрофона: в результате динамик издаёт отвратительный пронзительный «скрежет», как будто кто-то крайне громко водит вилкой по тарелке – исключительно раздражающий ультразвук, немедленно вызывающий чувство дискомфорта и тревоги. Это происходит потому, что система аудиоусилителя обнаруживает и усиливает собственный шум. Это частный пример положительной (регенерирующей) обратной связи, поскольку любой звук, обнаруживаемый микрофоном, усиливается и превращается в более громкий звук динамиком, который затем снова обнаруживается микрофоном, и так далее… Результатом является постоянно увеличивающийся шум, который будет расти до тех пор, пока система не достигнет «точки насыщения» и не сможет дальше генерировать ещё больше громкости.
Под впечатлением этого специфического неприятного примера можно задаться вопросом: а возможно ли какое-либо полезное использование обратной связи в усилительных схемах? Если мы вводим положительную или регенеративную обратную связь в схему усилителя, она имеет тенденцию создавать и поддерживать колебания, частота которых определяется значениями компонентов, обрабатывающих сигнал обратной связи от выхода к входу. Это один из способов сделать схему, генерирующей переменный ток из постоянного. Осцилляторы – весьма полезные схемы, поэтому обратная связь имеет для нас определённое практическое применение.
Отрицательная обратная связь
С другой стороны, отрицательная обратная связь оказывает «демпфирующее» (глушащее, амортизирующее) воздействие на усилитель: если выходной сигнал увеличивается по величине, сигнал обратной связи оказывает уменьшающееся влияние на вход усилителя, тем самым препятствуя изменению выходного сигнала. В то время как положительная обратная связь ведёт схему усилителя к точке нестабильности (усиливает колебания), отрицательная обратная связь ведёт её в противоположном направлении: к точке стабильности.
Схема усилителя, снабжённая некоторой отрицательной обратной связью, не только более стабильна, но и меньше искажает форму входного сигнала и, как правило, способна усиливать более широкий диапазон частот. Плата за эти преимущества (исходя даже из самого названия, у отрицательной обратной связи ведь должна же быть обратная сторона медали, не так ли?) – уменьшается коэффициент усиления. Если часть выходного сигнала усилителя «возвращается» на вход, чтобы противодействовать любым изменениям на выходе, потребуется бо́льшая амплитуда входного сигнала для приведения выхода усилителя к той же амплитуде, что и раньше. Это уменьшенное усиление и есть. Однако такие преимущества, как стабильность, меньшие искажения и бо́льшая полоса пропускания, стоят того, чтобы для многих приложений пойти на компромисс в виде снижения усиления.
Давайте рассмотрим простую усилительную схему и посмотрим, как мы можем ввести в неё отрицательную обратную связь:
Рис. 1. Усилитель с общим эмиттером без обратной связи.
Конфигурация этого усилителя представляет собой общий эмиттер со схемой смещения из резисторов R1 и R2. Конденсатор соединяет VВход с усилителем, так что источник сигнала не имеет постоянного напряжения, налагаемого на него цепью делителя напряжения R1//R2. Резистор R3 служит для управления усилением напряжения. Мы могли бы опустить его для максимального усиления напряжения, но поскольку такие базовые резисторы часто встречаются в схемах усилителей с общим эмиттером, мы оставим его в этой схеме.
Как и все усилители с общим эмиттером, этот усилитель инвертирует входной сигнал. Другими словами, положительное входное напряжение вызывает уменьшение выходного напряжения или движение к отрицательному, и наоборот.
Подключим на ключевых участках к схеме осциллографы и взглянем на осциллограммы:
Рис. 2. Усилитель с общим эмиттером, без обратной связи, с эталонными формами сигналов для сравн
ения.
Поскольку выход является инвертированным или зеркальным отображением входного сигнала, любое соединение между выходным (коллекторным) проводом и входным (базовым) проводом транзистора приведёт к отрицательной обратной связи:
Рис. 3. Отрицательная обратная связь коллектора уменьшает выходной сигнал.
Сопротивления R1, R2, R3 и RОбр.связь действуют вместе как сеть смешивания сигналов, так что напряжение, наблюдаемое на базе транзистора (относительно «земли»), является средневзвешенным значением входного напряжения и напряжения обратной связи, в результате чего наблюдается понижение амплитуды в сигнале, идущем на транзистор. Таким образом, схема усилителя на рисунке 2 выше будет иметь пониженное усиление по напряжению, но при этом улучшенную линейность (уменьшенные искажения) и увеличенную полосу пропускания.
Однако резистор, соединяющий коллектор с базой, – не единственный способ ввести отрицательную обратную связь в эту схему усилителя. Другой метод (немного более сложный для понимания) включает размещение резистора между выводом эмиттера транзистора и «землёй»:
Рис. 4. Обратная связь эмиттера: другой метод введения отрицательной обратной связи в схему.
Этот новый резистор обратной связи понижает напряжение пропорционально току эмиттера, проходящего через транзистор, и делает это таким образом, чтобы противодействовать влиянию входного сигнала на переход база/эмиттер транзистора. Давайте внимательнее рассмотрим переход эмиттер/база и посмотрим, чем отличается этот новый резистор на рисунке 5 ниже.
При отсутствии резистора обратной связи, соединяющего эмиттер с «землёй» на рисунке 5.а ниже, любой уровень входного сигнала (VВход), проходящего через связующий конденсатор, и цепь резисторов R1//R2//R3 будет воздействовать непосредственно на переход база/эмиттер, как входное напряжение транзистора (VБЭ). Другими словами, без резистора обратной связи VБЭ равно VВход. Следовательно, если VВход увеличивается на 100 мВ, то VБЭ увеличивается на 100 мВ: изменение одного равно изменению другого, поскольку два напряжения равны друг другу.
Теперь давайте рассмотрим эффекты вставки резистора (RОбр.связь) между выводом эмиттера транзистора и «землёй»:
Рис. 5. (а) Без обратной связи; (б) наличие обратной связи от эмиттера.
Форма волны сигнала на коллекторе инвертирована относительно базы. На 5.б форма волны эмиттера синфазна (эмиттерный повторитель) с базой, а не находится в фазе с коллектором. Следовательно, сигнал эмиттера вычитается из выходного сигнала коллектора.
Обратите внимание, как падение напряжения на RОбр.связь складывается с VБЭ, чтобы равняться VВход. С RОбр.связь в контуре VВход—VБЭ, VБЭ больше не будет равняться VВход. Мы знаем, что RОбр.связь будет понижать напряжение, пропорциональное эмиттерному току, который, в свою очередь, контролируется базовым током, который, в свою очередь, управляется напряжением, падающим на переходе база/эмиттер транзистора (VБЭ). Таким образом, если VВход будет увеличиваться в положительном направлении, это приведёт к увеличению VБЭ, вызывая больший базовый ток, вызывая больший коллекторный ток (нагрузки), вызывая больший эмиттерный ток и вызывая падение большего напряжения обратной связи на RОбр.связь. Однако это увеличение падения напряжения на резисторе обратной связи вычитается из VВход, чтобы уменьшить VБЭ, так что фактическое увеличение напряжения для VБЭ будет меньше, чем увеличение напряжения VВход. Увеличение VВход на 100 мВ больше не будет приводить к полному увеличению на 100 мВ для VБЭ, потому что два напряжения не равны друг другу.
Следовательно, входное напряжение имеет меньшее влияние на транзистор, чем раньше, и коэффициент усиления по напряжению для усилителя уменьшается: а это именно то, что мы ожидали от отрицательной обратной связи.
В практических схемах с общим эмиттером отрицательная обратная связь – не просто роскошь, а средство передвижения; это необходимость для стабильной работы. В идеальном мире мы могли бы построить и эксплуатировать транзисторный усилитель с общим эмиттером без отрицательной обратной связи и получить полную амплитуду VВход на переходе база/эмиттер транзистора. Это дало бы нам большой выигрыш по напряжению. К сожалению, соотношение между напряжением база/эмиттер и током база/эмиттер изменяется с температурой, как и предсказывает «уравнение диода». По мере нагрева транзистора будет меньше прямого падения напряжения на переходе база/эмиттер для любого заданного тока. Это вызывает проблему, поскольку сеть делителей напряжения R1//R2 предназначена для обеспечения правильного тока покоя через базу транзистора, чтобы он работал в любом желаемом классе работы (в этом примере я показал усилитель, работающий в режиме класса A). Если соотношение напряжение/ток транзистора изменяется с температурой, величина напряжения смещения постоянного тока, необходимая для желаемого класса работы, изменится. Горячий транзистор потребляет больше тока смещения при той же величине напряжения смещения, заставляя его нагреваться ещё больше, потребляя ещё больше тока смещения. В результате получаем тепловой разгон.
Однако усилители с общим коллектором не страдают от теплового разгона. Почему? Ответ связан с отрицательной обратной связью:
Рис. 6. Усилитель с общим коллектором (эмиттерным повторителем)
.
Обратите внимание, что нагрузочный резистор усилителя с общим коллектором установлен в том же месте, что и резистор обратной связи в последней цепи на рисунке выше 5.б: между эмиттером и «землёй». Это означает, что единственное напряжение, приложенное к переходу база/эмиттер транзистора, – это разница между VВход и VВыход, что приводит к очень низкому коэффициенту усиления по напряжению (обычно близкому к 1 для усилителя с общим коллектором). Для этого усилителя невозможен тепловой разгон: если ток базы увеличивается из-за нагрева транзистора, ток эмиттера также увеличивается, что приводит к большему падению напряжения на нагрузке, что, в свою очередь, вычитается из VВход, чтобы уменьшить падение напряжения между базой и эмиттером. Другими словами, отрицательная обратная связь, обеспечиваемая размещением нагрузочного резистора, делает проблему теплового разгона самокорректирующейся. В обмен на значительно сниженный коэффициент усиления по напряжению мы получаем превосходную стабильность и защиту от теплового разгона.
Добавляя резистор «обратной связи» между эмиттером и «землёй» в усилителе с общим эмиттером, мы делаем усилитель немного менее похожим на «идеальный» усилитель с общим эмиттером и немного больше похожим на усилитель с общим коллектором. Величина резистора обратной связи обычно немного меньше нагрузки, что сводит к минимуму количество отрицательной обратной связи и сохраняет довольно высокий коэффициент усиления по напряжению.
Ещё одно преимущество отрицательной обратной связи, отчётливо проявляющееся в схеме с общим коллектором, состоит в том, что она снижает зависимость коэффициента усиления по напряжению усилителя от характеристик транзистора. Обратите внимание, что в усилителе с общим коллектором коэффициент усиления по напряжению почти равен единице (= 1), независимо от β транзистора. Это означает, среди прочего, что мы могли бы заменить транзистор в усилителе с общим коллектором на транзистор с другим β и не увидеть каких-либо значительных изменений коэффициента усиления по напряжению. В схеме с общим эмиттером коэффициент усиления по напряжению сильно зависит от β. Если бы мы заменили транзистор в схеме с общим эмиттером на другой с другим β, коэффициент усиления по напряжению для усилителя значительно изменился бы. В усилителе с общим эмиттером, оснащённом отрицательной обратной связью, усиление по напряжению всё ещё будет зависеть от транзистора β до некоторой степени, но не в такой степени, как раньше, что делает схему более предсказуемой, несмотря на изменения в транзисторе β.
Тот факт, что мы должны ввести отрицательную обратную связь в усилитель с общим эмиттером, чтобы избежать теплового разгона, является неудовлетворительным решением. Можно ли избежать теплового разгона, не подавляя изначально высокое усиление по напряжению усилителя? Лучшее из двух решений этой дилеммы станет для нас доступным, если мы внимательно рассмотрим проблему: усиление напряжения, которое мы должны минимизировать, чтобы избежать теплового разгона, – это усиление напряжения постоянного тока, а не усиление напряжения переменного тока. В конце концов, не входной сигнал переменного тока подпитывает тепловой разгон: это напряжение смещения постоянного тока, необходимое для определённого класса работы: этот сигнал постоянного тока покоя, который мы используем, чтобы «обмануть» транзистор (по сути, устройство постоянного тока) для усиления сигнала переменного тока. Мы можем подавить усиление постоянного напряжения в схеме усилителя с общим эмиттером, не подавляя при этом усиление переменного напряжения, если найдём способ заставить отрицательную обратную связь работать только с постоянным током. То есть, если мы возвращаем только инвертированный сигнал постоянного тока с выхода на вход, но не инвертированный сигнал переменного тока.
Эмиттерный резистор обратной связи обеспечивает отрицательную обратную связь, понижая напряжение, пропорциональное току нагрузки. Другими словами, отрицательная обратная связь достигается путём вставки импеданса в путь тока эмиттера. Если мы хотим возвращать постоянный ток (не переменный), нам нужен импеданс, который будет высоким для постоянного тока, но низким для переменного тока. Какая схема имеет высокий импеданс для постоянного тока, но низкий импеданс для переменного тока? Конечно же, фильтр верхних частот!
Подключив конденсатор параллельно резистору обратной связи на рисунке ниже, мы создаём ту самую ситуацию, которая нам нужна: путь от эмиттера к «земле» проще для переменного тока, чем для постоянного.
Рис. 7. Восстановление высокого напряжения переменного тока путём добавления смещения параллельно с обратной связью.
Новый конденсатор «шунтирует» переменный ток от эмиттера транзистора к «земле», так что никакое заметное переменное напряжение не будет падать с эмиттера на «землю» для «обратной связи» со входом и подавления усиления напряжения. С другой стороны, постоянный ток не может проходить через конденсатор смещения и поэтому должен проходить через резистор обратной связи, понижая напряжение постоянного тока между эмиттером и «землёй», что снижает коэффициент усиления постоянного напряжения и стабилизирует реакцию усилителя на постоянном токе, предотвращая тепловой пробой. Поскольку мы хотим, чтобы реактивное сопротивление этого конденсатора (XКонд.) было как можно более низким, смещение должно быть относительно большим. Поскольку полярность на этом конденсаторе никогда не изменится, для этой задачи безопасно использовать поляризованный (электролитический) конденсатор.
Другой подход к проблеме отрицательной обратной связи, уменьшающей коэффициент усиления по напряжению, заключается в использовании многокаскадных усилителей, а не однотранзисторных. Если ослабленное усиление одного транзистора недостаточно для поставленной задачи, мы можем использовать более одного транзистора, чтобы компенсировать уменьшение, вызванное обратной связью. Пример схемы, показывающей отрицательную обратную связь в трёхкаскадном усилителе с общим эмиттером:
Рис. 8. Обратная связь вокруг «нечётного» числа каскадов с прямым соединением с общим эмиттером создаёт отрицательную обратную связь.
Путь обратной связи от конечного выхода к входу проходит через единственный резистор RОбр.связь. Поскольку каждый каскад представляет собой усилитель с общим эмиттером (таким образом, инвертирующий), нечётное количество каскадов от входа к выходу будет инвертировать выходной сигнал; обратная связь будет отрицательной (дегенеративной). Относительно большой объём обратной связи может быть использован без ущерба для усиления по напряжению, потому что три каскада усилителя для начала обеспечивают большое усиление.
Поначалу такая философия дизайна может показаться не элегантной и, возможно, даже контрпродуктивной. Разве это не довольно грубый способ преодолеть потерю усиления, понесённую из-за использования отрицательной обратной связи, просто восстановить усиление, добавляя этап за этапом? Какой смысл создавать огромное усиление по напряжению с использованием трёх транзисторных каскадов, если мы всё равно собираемся ослабить все это усиление с помощью отрицательной обратной связи? Дело в повышении предсказуемости и стабильности схемы в целом, хотя поначалу это может быть не очевидно. Если три транзисторных каскада предназначены для обеспечения произвольно высокого коэффициента усиления по напряжению (в десятки тысяч или более) без обратной связи, будет обнаружено, что добавление отрицательной обратной связи приводит к тому, что общий коэффициент усиления по напряжению становится менее зависимым от конкретного звена в каскаде, и примерно равняется простому отношению RОбр.связь / RВход. Чем больше коэффициент усиления по напряжению в схеме (без обратной связи), тем точнее коэффициент усиления по напряжению будет приблизительно соответствовать RОбр.связь / RВход после установления обратной связи. Другими словами, усиление напряжения в этой схеме фиксируется номиналами двух резисторов и не более того.
Это преимущество для массового производства электронных схем: если усилители с предсказуемым усилением могут быть построены с использованием транзисторов с широко варьируемыми значениями β, это упрощает выбор и замену компонентов. Это также означает, что коэффициент усиления усилителя мало меняется при изменении температуры. Этот принцип стабильного управления усилением с помощью усилителя с высоким коэффициентом усиления, «прирученного» отрицательной обратной связью, возводит подобные электронные схемы почти в ранг произведений искусства, называемых операционными усилителями (ОпУс). Вы можете узнать больше об этих схемах в следующих главах этой книги!
Итог
- Обратная связь – это связь выхода усилителя с его входом.
- Положительная или регенеративная обратная связь имеет тенденцию делать схему усилителя нестабильной, что приводит к колебаниям сигнала (переменному току). Частота этих колебаний во многом определяется компонентами сети обратной связи.
- Отрицательная или дегенеративная обратная связь имеет тенденцию делать схему усилителя более стабильной, так что её выход изменяется меньше для данного входного сигнала, чем без обратной связи. Это снижает коэффициент усиления усилителя, но имеет то преимущество, что уменьшает искажения и увеличивает полосу пропускания (диапазон частот, с которым может работать усилитель).
- Отрицательная обратная связь может быть введена в схему с общим эмиттером путём соединения коллектора с базой или путём вставки резистора между эмиттером и «землёй».
- Резистор «обратной связи» между эмиттером и «землёй» обычно используется в схемах с общим эмиттером как профилактическая мера против теплового разгона.
- Отрицательная обратная связь также имеет то преимущество, что усиление напряжения усилителя больше зависит от номиналов резистора и меньше зависит от характеристик транзистора.
- Усилители с общим коллектором имеют много отрицательной обратной связи из-за размещения нагрузочного резистора между эмиттером и «землёй». Эта обратная связь обеспечивает чрезвычайно стабильный коэффициент усиления по напряжению усилителя, а также его устойчивость к тепловому разгону.
- Коэффициент усиления по напряжению для схемы с общим эмиттером можно восстановить без ущерба для устойчивости к тепловому разгону, подключив конденсатор смещения параллельно с эмиттерным «резистором обратной связи».
- Если усиление по напряжению усилителя произвольно велико (десятки тысяч или больше), а отрицательная обратная связь используется для уменьшения усиления до разумных уровней, будет обнаружено, что усиление будет примерно равно RОбр.связь / RВход. Изменения в транзисторе β или других значениях внутренних компонентов мало повлияют на коэффициент усиления по напряжению при работе обратной связи, в результате чего усилитель будет стабильным и простым в конструкции.
См.также
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|
Внешние ссылки
Теория по электронике |
---|
Постоянный ток |
---|
Основные концепты электричества |
• Статическое электричество • Проводники, диэлектрики и поток электронов • Что такое электрические цепи? • Напряжение и электроток • Сопротивление • Напряжение и электроток в реальной цепи • Условный ток и поток электронов |
---|
Закон Ома |
• Закон Ома – Как напряжение, сила тока и сопротивление связаны друг с другом • Аналогия для закона Ома • Мощность в электрических цепях • Расчёт электрической мощности • Резисторы • Нелинейная проводимость • Построение цепи • Полярность перепада напряжения • Компьютерная симуляция электрических цепей |
---|
Правила электробезопасности |
• Важность правил электробезопасности • Воздействие электричества на психологическое состояние • Путь, который ток проходит перед ударом • Закон Ома (снова!) • Техника безопасности • Первая медицинская помощь при ударе током • Распространённые источники опасности • Проектирование электроцепей с учётом требований безопасности • Безопасное использование приборов для измерения электрических показателей • Данные о влиянии удара током на тело человека |
---|
Экспоненциальная запись и метрические приставки |
• Экспоненциальная запись • Арифметические операции для экспоненциальной записи • Метрические обозначения • Преобразование метрических приставок • Используем ручной калькулятор • Экспоненциальная форма в программе SPICE |
---|
Последовательные и параллельные электрические цепи |
• Что такое «последовательные» и «параллельные» электрические цепи • Простая последовательная цепь • Простая параллельная цепь • Электропроводность • Рассчитываем мощность • Правильно используем закон Ома • Анализ отказов компонентов цепи • Строим простые резистивные цепи |
---|
Схемы с делителями напряжения и правила Кирхгофа |
• Схемы с делителем напряжения • Правило напряжений Кирхгофа (ПНК) • Цепи – делители тока и формула делителя тока • Правило Кирхгофа для силы тока (ПКТ) |
---|
Комбинированные последовательно-параллельные схемы |
• Что такое последовательно-параллельная цепь • Методы анализа последовательно-параллельных резисторных цепей • Перерисовываем избыточно усложнённые схемы • Анализ отказов компонентов (продолжение) • Построение простых резисторных цепей |
---|
Измерения в электрических цепях постоянного тока |
• Что такое измеритель? • Как устроен вольтметр • Как вольтметр влияет на измеряемую цепь • Как устроен амперметр • Как амперметр влияет на измеряемую цепь • Как устроен омметр • Высоковольтный омметр • Мультиметры • Кельвиновское 4-проводное измерение сопротивления • Мостовые схемы • Как устроен ваттметр • Как самостоятельно сделать ручной калибратор |
---|
Сигналы электрического оборудования |
• Аналоговые и цифровые сигналы • Системы сигналов напряжения • Системы сигналов силы тока • Тахогенераторы • Теромопары • Измерения pH • Тензодатчики |
---|
Анализ сети постоянного тока |
• Что такое сетевой анализ? • Метод токов ветвей • Аналитический метод контурных токов • Метод узловых потенциалов • Введение в сетевые теоремы • Теорема Миллмана • Теорема о суперпозиции • Теорема Тевенена • Теорема Нортона • Эквивалентность схем Тевенена и Нортона • И вновь о теореме Миллмана • Теорема о передаче максимальной мощности • Δ-Y и Y-Δ преобразования |
---|
Батареи и системы питания |
• Поведение электронов при химических реакциях • Батарейные конструкции • Рейтинг батарей • Батареи специального назначения • Практические рекомендации при использовании батарей |
---|
Физика проводников и диэлектриков |
• Введение в физику проводников и диэлектриков • Размеры проводов• Допустимые токовые нагрузки на провода • Предохранители • Удельное сопротивление • Температурный коэффициент сопротивления • Сверхпроводимость • Пробивное напряжение диэлектрика |
---|
Конденсаторы |
• Электрическое поле и ёмкость • Конденсаторы и дифференциальное исчисление • Факторы, влияющие на ёмкость конденсатора • Последовательное и параллельное соединение конденсаторов • Практические соображения - Конденсаторы |
---|
Магнетизм и электромагнетизм |
• Постоянные магниты • Электромангетизм • Единицы измерения магнитных величин • Магнитная проницаемость и насыщение • Электромагнитная индукция • Взаимная индукция |
---|
Катушки индуктивности |
• Магнитные поля и индуктивность • Катушки индуктивности и дифференциальное исчисление • Факторы, влияющие на индуктивность • Катушки индуктивности в последовательных и параллельных соединениях • Практические соображения – Катушки индуктивности |
---|
Постоянные времени в RC и L/R цепях |
• Переходные процессы в электрических цепях • Переходные процессы в цепях с конденсатором • Переходные процессы в цепях с катушкой индуктивности • Расчёт напряжения и силы тока • Почему L/R, а не LR? • Комплексные расчёты напряжения и тока • Сложные схемы • Расчёт неизвестного времени |
---|
Переменный ток |
---|
Основы теории переменного тока |
• Что такое переменный ток? • Формы волн переменного тока • Измерение величин переменного тока • Расчёт простейшей цепи переменного тока • Фаза переменного тока • Принципы радио |
---|
Комплексные числа |
• Введение в комплексные числа • Векторы и волны переменного тока • Сложение простых векторов • Сложение сложных векторов • Полярная и алгебраическая запись комплексных чисел • Арифметика комплексных чисел • И ещё по поводу полярности переменного тока • Несколько примеров с цепями переменного тока |
---|
Реактанс и импеданс – Индуктивность |
• Резистор в цепи переменного тока (Индуктивность) • Катушка индуктивности в цепи переменного тока • Последовательные резистивно-индуктивные цепи • Параллельные резистивно-индуктивные цепи • Особенности катушек индуктивности • Что такое «скин-эффект»? |
---|
Реактанс и импеданс – Ёмкость |
• Резистор в цепи переменного тока (Ёмкость) • Конденсатор в цепи переменного тока • Последовательные резистивно-ёмкостные цепи • Параллельные резистивно-ёмкостные цепи • Особенности конденсаторов |
---|
Реактанс и импеданс – R/L/C-цепи |
• Обзор R, X и Z (сопротивление, реактанс и импеданс) • Последовательные R/L/C-цепи • Параллельные R/L/C-цепи • Последовательно-параллельные R/L/C-цепи • Реактивная проводимость и адмиттанс • R/L/C-цепи – что в итоге? |
---|
Резонанс |
• Электрический маятник • Простой параллельный резонанс (колебательный контур) • Простой последовательный резонанс • Применение резонанса • Резонанс в последовательно-параллельных цепях • Добротность и полоса пропускания резонансной цепи |
---|
Сигналы переменного тока смешанной частоты |
• Сигналы переменного тока смешанной частоты - Введение • Прямоугольные волновые сигналы • Другие волновые формы • Подробнее о спектральном анализе • Эффекты в электрических цепях |
---|
Фильтры |
• Что такое фильтр? • Низкочастотные фильтры • Высокочастотные фильтры • Полосовые фильтры • Полосно-заграждающие фильтры • Резонансные фильтры • Подводя итоги по фильтрам |
---|
Трансформаторы |
• Взаимная индуктивность и основные операции • Повышающие и понижающие трансформаторы • Электрическая изоляция • Фазировка • Конфигурации обмотки • Регулировка напряжения • Специальные трансформаторы и приложения • Практические соображения – Трансформаторы |
---|
Многофазные цепи переменного тока |
• Однофазные системы питания • Трёхфазные системы питания • Чередование фаз • Устройство многофазного двигателя • Трёхфазные Y- и дельта-конфигурации • Трёхфазные цепи с трансформатором • Гармоники в многофазных энергосистемах • Гармонические фазовые последовательности |
---|
Коэффициент мощности |
• Мощность в резистивных и реактивных цепях переменного тока • Истинная, реактивная и полная мощность • Расчёт коэффициента мощности • Практическая коррекция коэффициента мощности |
---|
Измерение цепей переменного тока |
• Вольтметры и амперметры переменного тока • Измерение частоты и фазы • Измерение мощности • Измерение качества электроэнергии • Мостовые схемы переменного тока • Измерительные преобразователи переменного тока |
---|
Двигатели переменного тока |
• Введение в двигатели переменного тока • Синхронные двигатели • Синхронный конденсатор • Двигатель с магнитным сопротивлением • Шаговые двигатели • Бесщёточный двигатель постоянного тока • Многофазные асинхронные двигатели Теслы • Асинхронные двигатели с фазным ротором • Однофазные асинхронные двигатели • Прочие специализированные двигатели • Сельсин-двигатели (синхронизированные двигатели) • Коллекторные двигатели переменного тока |
---|
Линии передачи |
• Кабель на 50 Ом? • Электрические цепи и скорость света • Характеристический импеданс • Линии передачи конечной длины • «Длинные» и «короткие» линии передачи • Стоячие волны и резонанс • Преобразование импеданса • Волноводы |
---|
Полупроводники |
---|
Усилители и активные устройства |
• От электрики к электронике • Активные и пассивные устройства • Усилители • Коэффициент усиления • Децибелы • Абсолютные дБ-шкалы • Аттенюаторы |
---|
Теория твердотельных приборов |
• Введение в теорию твердотельных устройств • Квантовая физика • Валентность и кристаллическая структура • Зонная теория твёрдых тел • Электроны и «дырки» • P-N-переход • Полупроводниковые диоды • Транзисторы с биполярным переходом • Полевые транзисторы • Полевые транзисторы с изолированным затвором (MOSFET) • Тиристоры • Методы производства полупроводников • Сверхпроводящие устройства • Квантовые устройства • Полупроводниковые приборы в SPICE |
---|
Диоды и выпрямители |
• Диоды и выпрямители – Введение • Проверка диодов мультиметром • Номинальные характеристики диодов • Схемы выпрямителей • Пиковый детектор • Схемы ограничителей напряжения • Схемы фиксаторов уровня • Умножители напряжения (удвоители, утроители, учетверители и т.д.) • Схемы коммутации индуктивных нагрузок • Диодные схемы коммутации • Что такое диод Зенера (стабилитрон)? • Диоды специального назначения • Прочие диодные технологии • Модели диодов в SPICE |
---|
Биполярные транзисторы |
• Транзисторы с биполярным переходом (ТБП) – Введение • Транзистор с биполярным переходом (ТБП) как переключатель • Проверка транзистора с биполярным переходом (ТБП) с помощью мультиметра • Активный режим работы транзистора с биполярным переходом (ТБП) • Усилительный каскад с общим эмиттером • Усилительный каскад с общим коллектором • Усилительный каскад с общей базой • Каскодный усилитель • Методы смещения для транзисторов с биполярным переходом (ТБП) • Расчёт смещения для транзисторов с биполярным переходом (ТБП) • Взаимодействие входа и выхода в транзисторах с биполярным переходом (ТБП) • Обратная связь в транзисторах с биполярным переходом (ТБП) • Импеданс усилителя • Токовые зеркала в транзисторах с биполярным переходом (ТБП) • Параметры и корпуса транзисторов с биполярным переходом (ТБП) • Особенности транзисторов с биполярным переходом (ТБП) |
---|
Полевые транзисторы |
• Полевые транзисторы (JFET) – Введение • Полевой транзистор (JFET) как переключатель • Проверка полевого транзистора (JFET) с помощью мультиметра • Активный режим работы полевого транзистора (JFET) |
---|
Полевые транзисторы с изолированным затвором |
• Полевые транзисторы с изолированным затвором – Введение • Обедняющие полевые транзисторы с изолированным затвором • Биполярные транзисторы с изолированным затвором |
---|
Тиристоры |
• Гистерезис • Газоразрядные лампы • Диод Шокли (динистор) • DIAC (симметричный динистор) • Управляемый кремниевый выпрямитель (SCR-тиристор) • TRIAC (симметричный тринистор, триак) • Оптотиристоры • Однопереходной транзистор • Управляемый кремниевый коммутатор (SCS-тиристор) • Тиристоры с полевым управлением |
---|
Операционные усилители |
• Операционные усилители (ОУ) – Введение • Несимметричные и дифференциальные усилители • «Операционный» усилитель • Отрицательная обратная связь • Делитель напряжения в цепи обратной связи • Аналогия для делителя напряжения в цепи обратной связи • Преобразование сигнала напряжения в сигнал тока • Схемы усреднителя и сумматора • Построение дифференциальных усилителей • Инструментальный (измерительный) усилитель • Схемы дифференциатора и интегратора • Положительная обратная связь • Практические аспекты ОУ • Модели операционных усилителей |
---|
Практические аналоговые полупроводниковые схемы |
• Электростатический разряд • Схемы источников питания • Схемы усилителей • Осцилляторные схемы • Радиосхемы • Вычислительные схемы • Измерительные схемы |
---|
Приводы двигателей постоянного тока |
• Широтно-импульсная модуляция |
---|
Электронные лампы |
• Электронные лампы – Введение • История электронных ламп – с чего всё началось • Триод • Тетрод • Силовой лучевой тетрод • Пентод • Комбинированные электронные лампы • Характеристики электронных ламп • Ионизированные (газовые) электронные лампы • Индикаторные электронные лампы • Микроволновые электронные лампы • Сравниваем электронные лампы и полупроводники |
---|
Цифровая электроника |
---|
Системы счисления |
• Числа и способы их выражения • Системы счисления • Сравниваем десятеричные и двоичные числа • Восьмеричная и шестнадцатеричная системы счисления • Восьмеричные и шестнадцатеричные числа преобразовываем в десятеричные • Преобразование из десятеричной системы счисления |
---|
Двоичная арифметика |
• Числа и системы счисления • Двоичное сложение • Отрицательные двоичные числа • Двоичное вычитание • Двоичное переполнение • Наборы битов |
---|
Логические вентили |
• Цифровые сигналы и вентили • Вентили «НЕ» • «Буферные» вентили • Вентили с более чем одним входом • Транзисторно-транзисторная логика вентилей «И-НЕ» и «И» • Транзисторно-транзисторная логика вентилей «ИЛИ-НЕ» и «ИЛИ» • Схемы КМОП-вентилей • Специальные выходы в вентилях • Универсальность вентилей «И-НЕ» и «ИЛИ-НЕ» • Уровни напряжения для «высоких» и «низких» логических сигналов • Вентильные DIP корпусы |
---|
Переключатели |
• Типы переключателей • Как устроены контакты переключателей • «Нормальное» состояние контакта и последовательное замыкание/размыкание • «Дребезжание» контактов |
---|
Электромеханические реле |
• Устройство реле • Контакторы • Реле с задержкой времени • Защитные реле • Твердотельные реле |
---|
Релейная логика |
• «Лестничные» диаграммы • Функции цифровой логики • Разрешающие и блокирующие схемы • Схемы управления двигателем • Отказоустойчивость • Программируемые логические контроллеры (ПЛК) |
---|
Булева алгебра |
• Булева алгебра – Введение • Логическая арифметика • Булевы алгебраические тождества • Булевы алгебраические свойства • Логические правила для упрощения • Примеры упрощения схем • Функция «Исключающее ИЛИ»: вентиль XOR • Законы де Моргана • Преобразование таблиц истинности в логические выражения |
---|
Карты Карно |
• Карты Карно – Введение • Диаграммы Венна и множества • Булевы соотношения на диаграммах Венна • Преобразование диаграмм Венна в карты Карно • Карты Карно, таблицы истинности и логические выражения • Упрощение логики с помощью карт Карно • Бо́льшие карты Карно с 4-мя переменными • Минтермы и макстермы в реализациях • Обозначения сумм и произведений • Поля «безразличия» на картах Карно • Бо́льшие карты Карно с 5-ю и 6-ю переменными |
---|
Функции комбинационной логики |
• Функции комбинационной логики – Введение • Неполный сумматор • Полный сумматор • Декодер • Кодер • Демультиплексоры • Мультиплексоры • Совместное использование множественных комбинационных схем |
---|
Мультивибраторы |
• Цифровая логика с обратной связью • SR-защёлка • Вентильная SR-защёлка • D-защёлка • Защёлки с запуском по фронту сигнала: триггеры • JK-триггер • Триггеры с асинхронными входами • Моностабильные мультивибраторы |
---|
Схемы последовательностей |
• Двоичная счётная последовательность • Асинхронные счётчики • Синхронные счётчики • Конечные автоматы |
---|
Сдвиговые регистры |
• Сдвиговые регистры – Введение • Сдвиговые регистры: последовательный вход, последовательный выход (SISO) • Сдвиговые регистры: параллельный вход, последовательный выход (PISO) • Сдвиговые регистры: последовательный вход, параллельный выход (SIPO) • Универсальные сдвиговые регистры: параллельный вход, параллельный выход (PIPO) • Кольцевые счётчики |
---|
Цифро-аналоговые и аналого-цифровые преобразования |
• Цифро-аналоговые (ЦАП) и аналого-цифровые (АЦП) преобразования – Введение • ЦАП R/2nR: цифро-аналоговый преобразователь с двоично-взвешенным входом • ЦАП R/2R: (цифро-аналоговый преобразователь) • Параллельные АЦП • Цифровые ступенчатые АЦП • АЦП с последовательным приближением • Отслеживающий АЦП • Скатные (интегрирующие) АЦП • Дельта-сигма АЦП • Практические аспекты схем АЦП |
---|
Цифровая связь |
• Цифровая связь – Введение • Сети и шины • Потоки данных • Типы электрических сигналов • Оптическая передача данных • Топология сети • Сетевые протоколы • Практические аспекты цифровой связи |
---|
Цифровое хранилище (память) |
• Почему «цифровое»? • Понятия и концепции цифровой памяти • Современная немеханическая память • Устаревшие немеханические технологии памяти • Постоянное запоминающее устройство (ПЗУ) • Память с движущимися частями: «Приводы» |
---|
Принципы цифровых вычислений |
• Двоичный сумматор • Таблицы поиска • Конечные автоматы • Микропроцессоры • Микропроцессорное программирование |
---|
Справочные материалы |
---|
Полезные уравнения и коэффициенты пересчёта |
• Уравнения и законы для цепей постоянного тока • Правила последовательных цепей • Правила параллельных цепей • Эквивалентные значения компонентов в последовательных и параллельных цепях • Уравнение ёмкости конденсатора • Уравнение катушки индуктивности • Уравнения постоянной времени • Уравнения цепей переменного тока • Уравнения для децибел • Метрические приставки и преобразования единиц измерения |
---|
Цветовая маркировка |
• Цветовая маркировка резисторов • Цветовая маркировка проводки • Инфографика цветовой маркировки проводки |
---|
Таблицы проводников и диэлектриков |
• Таблица калибров медной проволоки • Таблица допустимых нагрузок для медного провода • Коэффициенты удельного сопротивления • Таблица температурных коэффициентов сопротивления • Критические температуры для сверхпроводников • Диэлектрическая прочность изоляторов |
---|
Справочник по алгебре |
• Основные алгебраические тождества • Основные свойства арифметики • Свойства степеней • Извлечение корней • Важные константы • Логарифмы • Формулы сокращённого умножения • Квадратное уравнение • Прогрессии • Факториалы • Решение систем уравнений: метод подстановки и метод сложения |
---|
Справочник по тригонометрии |
• Тригонометрия прямоугольного треугольника • Тригонометрия произвольного треугольника • Тригонометрические формулы • Гиперболические функции |
---|
Справочник по исчислению |
• Формулы вычисления пределов • Производная числа • Общие производные • Производные показательных функций с основанием e • Производные простых тригонометрических функций • Правила вычисления производных • Первообразная (неопределённый интеграл) • Общие первообразные • Первообразные показательных функций от числа e • Правила вычисления первообразных • Определённые интегралы и основная теорема исчисления • Дифференциальные уравнения |
---|
Использование программы SPICE для моделирования электрических схем |
• Программа моделирования электрических цепей SPICE — Введение • История программы SPICE • Основы программирования в SPICE • Интерфейс командной строки • Компоненты электрических схем • Опции для проведения анализа • Странные особенности программы SPICE • Примеры электрических цепей и списков связей |
---|
Устранение неполадок – теория и практика |
• Вопросы, которые следует задать, прежде чем продолжить • Общие советы по устранению неполадок • Конкретные методы устранения неполадок • Вероятные сбои в проверенных системах • Вероятные сбои в непроверенных системах • Возможные ментальные ловушки |
---|
Схематические обозначения элементов цепи |
• Провода и соединения • Источники питания • Типы резисторов • Типы конденсаторов • Катушки индуктивности • Взаимные катушки индуктивности • Переключатели с ручным управлением • Управляемые процессом переключатели • Переключатели с электрическим приводом (реле) • Соединители • Диоды • Биполярные транзисторы • Переходные транзисторы с полевым эффектом (JFET) • Транзисторы с полевым эффектом с изолированным затвором (IGFET или MOSFET) • Гибридные транзисторы • Тиристоры • Интегральные схемы • Электронные лампы |
---|
Периодическая таблица химических элементов |
• Таблица Менделеева |
---|
Эксперименты |
---|
Введение |
• Электроника как точная наука • Обустраиваем домашнюю лабораторию |
---|
Основные концепции и испытательное оборудование |
• Использование вольтметра • Использование омметра • Очень простая схема • Использование амперметра при измерении силы тока • Закон Ома • Нелинейное сопротивление • Рассеяние мощности • Цепь с переключателем • Эксперимент по электромагнетизму • Эксперимент с электромагнитной индукцией |
---|
Электрические цепи постоянного тока |
• Электрические цепи постоянного тока – Введение • Последовательные источники питания • Параллельные источники питания • Делитель напряжения • Делитель тока • Потенциометр как делитель напряжения • Потенциометр как реостат • Прецизионный потенциометр • Ограничение диапазона реостата • Термоэлектричество • Мультиметр своими руками • Чувствительный детектор напряжения • Потенциометрический вольтметр • 4-проводное измерение сопротивления • Простейший компьютер • Картошка-батарейка • Зарядка и разрядка конденсатора • Индикатор скорости изменения |
---|
Электрические цепи переменного тока |
• Электрические цепи переменного тока – Введение • Трансформатор – блок питания • Сборка трансформатора • Переменный индуктор • Чувствительный аудиодетектор • Обнаружение магнитных полей переменного тока • Обнаружение электрических полей переменного тока • Альтернатор – автомобильный генератор • Асинхронный двигатель • Асинхронный двигатель побольше • Фазовый сдвиг • Погашение звука • Музыкальный синтезатор как генератор сигналов • ПК-осциллограф • Анализ волновых сигналов • Колебательный контур • Сигнальная связь |
---|
Дискретные полупроводниковые схемы |
• Дискретные полупроводниковые схемы – Введение • Коммутирующий диод • Полупериодный выпрямитель • Двухполупериодный мостовой выпрямитель • Двухполупериодный выпрямитель с центральным отводом • Цепь «выпрямитель/фильтр» • Регулятор напряжения • Транзистор как переключатель • Датчик статического электричества • Датчик импульсного света • Повторитель напряжения • Усилитель с общим эмиттером • Многокаскадный усилитель • Как построить схему токового зеркала • JFET – регулятор тока • Дифференциальный усилитель • Простой операционный усилитель • Аудио осциллограф • Ламповый аудио усилитель |
---|
Аналоговые интегральные схемы |
• Аналоговые интегральные схемы – Введение • Компаратор напряжения • Прецизионный повторитель напряжения • Неинвертирующий усилитель • Высокоимпедансный вольтметр • Интегратор • Аудио осциллограф на таймерной схеме 555 • Наклонный генератор на таймерной схеме 555 • ШИМ-контроллер мощности • Аудиоусилитель класса B |
---|
Цифровые интегральные схемы |
• Цифровые интегральные схемы – Введение • Основная функция вентилей • SR-защёлка на основе вентилей «ИЛИ-НЕ» • SR-защёлка на основе вентиля «И-НЕ» с входом разрешения • SR-триггер на основе вентиля «И-НЕ» • Светодиодный секвенсор • Простейший кодовый замок • 3-битный двоичный счётчик • 7-сегментный дисплей |
---|
Таймерные схемы 555 |
• Интегральный таймер 555 • Триггер Шмитта на интегральном таймере 555 • Гистерезисный осциллограф на интегральном таймере 555 • Моностабильный мультивибратор на интегральном таймере 555 • Минимальное количество комплектующих для КМОП-схемы 555 проблескового прибора длительного действия на красных светодиодах • КМОП-схема 555 проблескового прибора длительного действия на синих светодиодах • КМОП-схема 555 проблескового прибора длительного действия на светодиодах обратного хода • КМОП-схема 555 проблескового прибора длительного действия на красных светодиодах |
---|