Перевод: Макаров В. (valemak)
Проверка/Оформление/Редактирование: Мякишев Е.А.
Умножители напряжения (удвоители, утроители, учетверители и т.д.)[1]
Умножитель напряжения – это специализированный выпрямитель цепи, выходной сигнал которого теоретически кратен пику входного сигнала переменного тока, например, больше в 2, 3 или 4 раза, чем пик переменного тока входного сигнала. Таким образом, можно получить 200 В постоянного тока от источника переменного тока с пиковым напряжением 100 В, используя удвоитель, а 400 В постоянного тока от того же источника на 100 В – от учетверителя. Любая нагрузка в практической цепи снизит эти напряжения.
Мы рассмотрим несколько типов умножителей напряжения – удвоитель напряжения (полуволновой и двухполупериодный), утроитель напряжения и учетверитель напряжения – а затем сделаем некоторые общие замечания о вопросах безопасности для умножителя напряжения и напоследок рассмотрим умножитель Кокрофта-Уолтона.
Удвоитель напряжения
Весьма распространённое применение удвоителя напряжения – это источник питания постоянного тока, способный использовать источник переменного тока на 240 В или 120 В. В источнике питания можно переключиться на двухполупериодный мост, для выработки около 300 В постоянного тока от источника 240 В переменного тока. Можно переключиться на 120 В, тогда мост как работает как удвоитель, вырабатывая около 300 В постоянного тока из 120 В переменного тока. В обоих случаях вырабатывается 300 В постоянного тока. Это в дальнейшем может использоваться как входное напряжение для импульсного регулятора, вырабатывающего более низкие напряжения для питания, скажем, персонального компьютера.
Полуволновой удвоитель напряжения
Полуволновой удвоитель напряжения на рисунке 1.а ниже состоит из двух цепей: фиксатора уровня (рисунок 1.б) и пикового детектора (полуволнового выпрямителя), который показан в изменённой форме на рисунке 1.в ниже. К пиковому детектору добавлен конденсатор C2, что и делает схему полуволновым выпрямителем.
Рис. 1. Полупериодный удвоитель напряжения (а) состоит из (б) фиксатора и (в) полуволнового выпрямителя.
Анализ рабочих схем полуволнового удвоителя напряжения
На рисунке 1.б выше, C2 заряжается до 5 В (если точнее, то до 4,3 В с учётом падения напряжения на диоде) на отрицательном полупериоде входного переменного тока. Правый вывод заземлён проводом D2. Левый вывод заряжается на отрицательном пике входа переменного тока. Так работает фиксатор уровня.
Во время положительного полупериода полуволновой выпрямитель вступает в игру, как показано на рисунке 1.в выше. Диод D2 не в цепи, так как он включён в обратном направлении. C2 теперь включён последовательно с источником напряжения. Обратите внимание на полярность батареи и C2, последовательного вспомогательного устройства. Таким образом, выпрямитель D1 получает всего 10 В на пике синусоиды, 5 В от батареи и 5 В от C2. D1 проводит сигнал V(1) (рисунок 2 ниже ), заряжая C1 до пика синусоидальной волны до 5 В постоянного тока (кривая V(2) на рисунке 2 ниже). Волна V(2) – это выходной сигнал удвоителя, который стабилизируется на уровне 10 В (точнее 8,6 В с учётом падения напряжения на диодах) после нескольких циклов входного синусоидального сигнала.
Рис. 2. Удвоитель напряжения: V(4) – это вход, V(1) –фиксатор уровня, V(2) – выход однополупериодного выпрямителя, который также является и выходом удвоителя. |
*SPICE 03255.eps C1 2 0 1000p D1 1 2 diode C2 4 1 1000p D2 0 1 diode V1 4 0 SIN(0 5 1k) .model diode d .tran 0.01m 5m .end
|
Двухполупериодный удвоитель напряжения
Двухполупериодный удвоитель напряжения состоит из пары последовательно включённых полуволновых выпрямителей (рисунок 3 ниже). Также рядом приведён соответствующий список соединений SPICE для этой схемы.
Анализ работы полноволнового удвоителя напряжения
Нижний выпрямитель заряжает C1 за отрицательный полупериод входного сигнала. Верхний выпрямитель заряжает C2 в положительном полупериоде. Каждый конденсатор получает заряд 5 В (4,3 В с учётом падения напряжения на диоде). Выход в узле 5 представляет собой последовательную сумму C1 + C2 или 10 В (8,6 В, если с падениями напряжения на диодах).
Рис. 3. Двухполупериодный удвоитель напряжения состоит из двух полуволновых выпрямителей, работающих на чередующихся полярностях. |
*SPICE 03273.eps *R1 3 0 100k *R2 5 3 100k D1 0 2 diode D2 2 5 diode C1 3 0 1000p C2 5 3 1000p V1 2 3 SIN(0 5 1k) .model diode d .tran 0.01m 5m .end
|
Обратите внимание, что выход V(5) достигает полного значения в течение одного цикла изменения входа V(2):
Рис. 4. Двухполупериодный удвоитель напряжения: V(2) – это вход, V(3) – напряжение в средней точке, V(5) – напряжение на выходе.
Получение двухполупериодных удвоителей из однополупериодных выпрямителей
На рисунке 5.а ниже показано, как получить двухполупериодный удвоитель, имея пару полуволновых выпрямителей противоположной полярности. Отрицательный выпрямитель пары для наглядности перерисован на рисунке 5.б. Оба они объединены на рисунке 5.в при помощи общего провода. На рисунке 5.г отрицательный выпрямитель переподключён для совместного использования с положительным выпрямителем общего источника напряжения. В этом случае получаем источник питания ± 5 В (4,3 В с падением напряжения на диоде); тем не менее, между двумя выводами замер показывает 10 В. Контрольная точка заземления перемещена так, чтобы напряжение +10 В было доступно по отношению к «земле».
Рис. 5. Двухполупериодный удвоитель: (а) пара удвоителей, (б) перерисовка одного из удвоителей для наглядности, (в) общее заземление, (г) общий источник напряжения, (e) перемещение точки заземления.
Утроитель напряжения
Утроитель напряжения (рисунок 6 ниже) скомбинирован из удвоителя и полуволнового выпрямителя (C3 + D3). Однополупериодный выпрямитель выдаёт 5 В (4,3 В) в узле 3. Удвоитель обеспечивает еще 10 В (8,4 В) между узлами 2 и 3. Суммарно получается 15 В (12,9 В) на выходном узле 2 относительно заземления. Список соединений SPICE также прилагается (рисунок 7 ниже):
Рис. 6. Утроитель напряжения, состоящий из удвоителя, помещённого поверх одного из звеньев выпрямителя.
Обратите внимание, что V(3) на рисунке 7 ниже возрастает до 5 В (4,3 В) в первом отрицательном полупериоде. График входа V(4) сдвигается вверх на 5 В (4,3 В) за счёт 5 В от однополупериодного выпрямителя. И плюс ещё 5 В на V(1) из-за фиксатора уровня (C2, D2). D1 заряжает C1 (волна V(2)) до пикового значения V(1).
Рис. 7. Утроитель напряжения: V(3) – однополупериодный выпрямитель, V(4) – входной сигнал на + 5 В, V(1) – фиксатор уровня, V(2) – конечный выход. |
*SPICE 03283.eps C3 3 0 1000p D3 0 4 diode C1 2 3 1000p D1 1 2 diode C2 4 1 1000p D2 3 1 diode V1 4 3 SIN(0 5 1k) .model diode d .tran 0.01m 5m .end
|
Учетверитель напряжения
Учетверитель напряжения представляет собой комбинацию сложения двух удвоителей, показанных на рисунке 8 ниже. Каждый удвоитель по отдельности обеспечивает 10 В (8,6 В) для последовательной суммы на узле 2 по отношению к «земле» – итого 20 В (17,2 В).
Список соединений SPICE представлен на рисунке 9 ниже.
Рис. 8. Учетверитель напряжения, состоящий из двух последовательно соединенных удвоителей, с выходом в узле 2.
Волновые сигналы учетверителя показаны на рисунке ниже. Доступны два выхода постоянного тока: V(3) – это выход удвоителя, и V(2) – это выход учетверителя. На фиксаторах уровня некоторые из промежуточных напряжений показывают, что входная синусоида (не показана на графике), колеблющаяся на 5 В, последовательно фиксируется на более высоких уровнях: на V(5), V(4) и V(1). Строго говоря, V(4) не является выходом фиксатора уровня. Это просто источник переменного напряжения, подключённый последовательно к выходу удвоителя V(3). Тем не менее, V(1) является фиксированной версией V(4).
Рис. 9. Учетверитель напряжения: постоянное напряжение доступно на V(3) и V(2). Волны промежуточных сигналов: фиксаторы V(5), V(4), V(1). |
*SPICE 03441.eps *SPICE 03286.eps C22 4 5 1000p C11 3 0 1000p D11 0 5 diode D22 5 3 diode C1 2 3 1000p D1 1 2 diode C2 4 1 1000p D2 3 1 diode V1 4 3 SIN(0 5 1k) .model diode d .tran 0.01m 5m .end
|
Замечания по умножителям напряжения и источникам питания с линейным приводом
Здесь уместно сделать несколько ремарок по умножителям напряжения. Параметры схемы, использованные в примерах (V = 5 В, 1 кГц, C = 1000 пФ), не обеспечивают большого тока, там только уровень микроампер. Кроме того, везде отсутствовали нагрузочные резисторы. Нагрузка дополнительно снижает напряжения по сравнению с показанными значениями. Если схемы должны управляться источником питания с частотой в килогерцах при низком напряжении, как в приведённых выше примерах, то конденсаторы в таких случаях обычно имеют номинал от 0,1 до 1,0 мкФ, чтобы на выходе был миллиамперный ток. Если умножители работают с частотой 50/60 Гц, конденсатор составляет от нескольких сотен до нескольких тысяч микрофарад, чтобы обеспечить выходной ток в сотни миллиампер. При питании от сетевого напряжения обратите внимание на полярность и номинальное напряжение конденсаторов.
И наконец, любой источник питания с прямым питанием от сети (без трансформатора) опасен как для самого экспериментатора, так и для испытательного оборудования, работающего от сети. Коммерческие источники питания с прямым приводом безопасны, поскольку опасная электрическая схема находится в корпусе, что обеспечивает защиту пользователя. При установке в эти схемы электролитических конденсаторов любого напряжения, конденсаторы взорвутся при изменении полярности. Если уж и экспериментируете с такими цепями, то включать их следует за защитным экраном.
Умножитель Кокрофта-Уолтона
Умножитель напряжения, состоящий из каскада (из любого количества) полуволновых удвоителей известен как умножитель Ко́крофта-Уо́лтона, как показано на рисунке 10 ниже. Этот умножитель используется, когда требуется высокое напряжение при низком токе. Преимущество перед обычным источником питания состоит в том, что не требуется дорогой высоковольтный трансформатор – по крайней мере, не равный всей выходной мощности.
Рис. 10. Умножитель (×8) напряжения Кокрофта-Уолтона; вывод на узел 8.
Пара диодов и конденсаторов слева от узлов 1 и 2 на рисунке выше составляет полуволновой удвоитель. Диоды, повёрнутые на 45° против часовой стрелки и нижние конденсаторы, делает схему похожей на то, что изображено на рисунке 1.а выше (там также эквивалентный блок из двух диодов и конденсатора). Четыре секции удвоения каскадно располагаются слева-направо, что теоретически должно дать коэффициент умножения ×8. Узел 1 имеет волну сигнала, характерную для фиксатора уровня (не показано на рисунке 11 ниже), т.е. синусоиду, сдвинутую вверх на ×1 (5 В). Остальные узлы с нечётными номерами представляют собой синусоиды, ограниченные последовательно более высокими напряжениями. Узел 2, выход первого удвоителя, представляет собой двойное постоянное напряжение V(2) на рисунке 11 ниже. Последовательные узлы с чётными номерами последовательно показывают всё более высокие напряжения: V(4), V(6), V(8).
Рис. 11. Осциллограммы для умножителя Кокрофта-Уолтона (×8). Выход – V(8). |
D1 7 8 diode C1 8 6 1000p D2 6 7 diode C2 5 7 1000p D3 5 6 diode C3 4 6 1000p D4 4 5 diode C4 3 5 1000p D5 3 4 diode C5 2 4 1000p D6 2 3 diode D7 1 2 diode C6 1 3 1000p C7 2 0 1000p C8 99 1 1000p D8 0 1 diode V1 99 0 SIN(0 5 1k) .model diode d .tran 0.01m 50m .end
|
Без падений на диодах каждый удвоитель дает 2VВход. или 10 В. Если же учесть два диодных падения (10 - 1,4) = 8,6 В, то это ближе к реальному значению. Всего для 4-х удвоителей ожидается 4 × 8,6 = 34,4 В из теоретически максимально возможных 40 В.
Если взглянуть на рисунок 11 выше, то примерно правильным представляется V(2); однако получаем выход V(8) < 30 В вместо ожидаемых 34,4 В. Проблема с множителем Кокрофта-Уолтона заключается в том, что каждая дополнительная ступень увеличивает в меньшей степени, чем предыдущая. Таким образом, на практике сталкиваемся с пределом в максимальном количестве секций. Это ограничение преодолевается, если изменить базовую схему. Также обратите внимание на временну́ю шкалу 40 мс по сравнению с 5 мс для предыдущих схем. Потребовалось аж 40 мс для повышения напряжения до предельного значения для этой цепи. В списке соединений на рисунке выше есть команда «.tran 0.010m 50m» для увеличения времени моделирования до 50 мс; правда, отображается только первые 40 мс.
Умножитель Кокрофта-Уолтона служит более эффективным источником высокого напряжения для фотоэлектронных умножителей, требующих до 2000 В. Я даже больше скажу, трубка имеет множество динодов, клемм, требующих подключения к узлам «с чётными номерами» с более низким напряжением. Последовательный ряд отводов умножителя заменяет теплогенерирующий резистивный делитель напряжения в предыдущих схемах.
Умножитель Кокрофта-Уолтона, работающий от сети переменного тока, подаёт высокое напряжение на «ионные генераторы» для нейтрализации электростатического заряда и для очистителей воздуха.
Итог
- Умножитель напряженияКурсивное начертание выдаёт постоянный ток, кратный (×2, ×3, ×4 и т.д.) пиковому входному напряжению переменного тока.
- Самый базовый умножитель – это полуволновой удвоитель.
- Двухполупериодный удвоитель – наилучший.
- Утроитель – однополупериодный удвоитель + обычный выпрямитель (пиковый детектор).
- Учетверитель – пара полуволновых удвоителей.
- Цепочка, состоящая из полуволновых удвоителей известна как умножитель Кокрофта-Уолтона.
См.также
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|
Внешние ссылки
Теория по электронике |
---|
Постоянный ток |
---|
Основные концепты электричества |
• Статическое электричество • Проводники, диэлектрики и поток электронов • Что такое электрические цепи? • Напряжение и электроток • Сопротивление • Напряжение и электроток в реальной цепи • Условный ток и поток электронов |
---|
Закон Ома |
• Закон Ома – Как напряжение, сила тока и сопротивление связаны друг с другом • Аналогия для закона Ома • Мощность в электрических цепях • Расчёт электрической мощности • Резисторы • Нелинейная проводимость • Построение цепи • Полярность перепада напряжения • Компьютерная симуляция электрических цепей |
---|
Правила электробезопасности |
• Важность правил электробезопасности • Воздействие электричества на психологическое состояние • Путь, который ток проходит перед ударом • Закон Ома (снова!) • Техника безопасности • Первая медицинская помощь при ударе током • Распространённые источники опасности • Проектирование электроцепей с учётом требований безопасности • Безопасное использование приборов для измерения электрических показателей • Данные о влиянии удара током на тело человека |
---|
Экспоненциальная запись и метрические приставки |
• Экспоненциальная запись • Арифметические операции для экспоненциальной записи • Метрические обозначения • Преобразование метрических приставок • Используем ручной калькулятор • Экспоненциальная форма в программе SPICE |
---|
Последовательные и параллельные электрические цепи |
• Что такое «последовательные» и «параллельные» электрические цепи • Простая последовательная цепь • Простая параллельная цепь • Электропроводность • Рассчитываем мощность • Правильно используем закон Ома • Анализ отказов компонентов цепи • Строим простые резистивные цепи |
---|
Схемы с делителями напряжения и правила Кирхгофа |
• Схемы с делителем напряжения • Правило напряжений Кирхгофа (ПНК) • Цепи – делители тока и формула делителя тока • Правило Кирхгофа для силы тока (ПКТ) |
---|
Комбинированные последовательно-параллельные схемы |
• Что такое последовательно-параллельная цепь • Методы анализа последовательно-параллельных резисторных цепей • Перерисовываем избыточно усложнённые схемы • Анализ отказов компонентов (продолжение) • Построение простых резисторных цепей |
---|
Измерения в электрических цепях постоянного тока |
• Что такое измеритель? • Как устроен вольтметр • Как вольтметр влияет на измеряемую цепь • Как устроен амперметр • Как амперметр влияет на измеряемую цепь • Как устроен омметр • Высоковольтный омметр • Мультиметры • Кельвиновское 4-проводное измерение сопротивления • Мостовые схемы • Как устроен ваттметр • Как самостоятельно сделать ручной калибратор |
---|
Сигналы электрического оборудования |
• Аналоговые и цифровые сигналы • Системы сигналов напряжения • Системы сигналов силы тока • Тахогенераторы • Теромопары • Измерения pH • Тензодатчики |
---|
Анализ сети постоянного тока |
• Что такое сетевой анализ? • Метод токов ветвей • Аналитический метод контурных токов • Метод узловых потенциалов • Введение в сетевые теоремы • Теорема Миллмана • Теорема о суперпозиции • Теорема Тевенена • Теорема Нортона • Эквивалентность схем Тевенена и Нортона • И вновь о теореме Миллмана • Теорема о передаче максимальной мощности • Δ-Y и Y-Δ преобразования |
---|
Батареи и системы питания |
• Поведение электронов при химических реакциях • Батарейные конструкции • Рейтинг батарей • Батареи специального назначения • Практические рекомендации при использовании батарей |
---|
Физика проводников и диэлектриков |
• Введение в физику проводников и диэлектриков • Размеры проводов• Допустимые токовые нагрузки на провода • Предохранители • Удельное сопротивление • Температурный коэффициент сопротивления • Сверхпроводимость • Пробивное напряжение диэлектрика |
---|
Конденсаторы |
• Электрическое поле и ёмкость • Конденсаторы и дифференциальное исчисление • Факторы, влияющие на ёмкость конденсатора • Последовательное и параллельное соединение конденсаторов • Практические соображения - Конденсаторы |
---|
Магнетизм и электромагнетизм |
• Постоянные магниты • Электромангетизм • Единицы измерения магнитных величин • Магнитная проницаемость и насыщение • Электромагнитная индукция • Взаимная индукция |
---|
Катушки индуктивности |
• Магнитные поля и индуктивность • Катушки индуктивности и дифференциальное исчисление • Факторы, влияющие на индуктивность • Катушки индуктивности в последовательных и параллельных соединениях • Практические соображения – Катушки индуктивности |
---|
Постоянные времени в RC и L/R цепях |
• Переходные процессы в электрических цепях • Переходные процессы в цепях с конденсатором • Переходные процессы в цепях с катушкой индуктивности • Расчёт напряжения и силы тока • Почему L/R, а не LR? • Комплексные расчёты напряжения и тока • Сложные схемы • Расчёт неизвестного времени |
---|
Переменный ток |
---|
Основы теории переменного тока |
• Что такое переменный ток? • Формы волн переменного тока • Измерение величин переменного тока • Расчёт простейшей цепи переменного тока • Фаза переменного тока • Принципы радио |
---|
Комплексные числа |
• Введение в комплексные числа • Векторы и волны переменного тока • Сложение простых векторов • Сложение сложных векторов • Полярная и алгебраическая запись комплексных чисел • Арифметика комплексных чисел • И ещё по поводу полярности переменного тока • Несколько примеров с цепями переменного тока |
---|
Реактанс и импеданс – Индуктивность |
• Резистор в цепи переменного тока (Индуктивность) • Катушка индуктивности в цепи переменного тока • Последовательные резистивно-индуктивные цепи • Параллельные резистивно-индуктивные цепи • Особенности катушек индуктивности • Что такое «скин-эффект»? |
---|
Реактанс и импеданс – Ёмкость |
• Резистор в цепи переменного тока (Ёмкость) • Конденсатор в цепи переменного тока • Последовательные резистивно-ёмкостные цепи • Параллельные резистивно-ёмкостные цепи • Особенности конденсаторов |
---|
Реактанс и импеданс – R/L/C-цепи |
• Обзор R, X и Z (сопротивление, реактанс и импеданс) • Последовательные R/L/C-цепи • Параллельные R/L/C-цепи • Последовательно-параллельные R/L/C-цепи • Реактивная проводимость и адмиттанс • R/L/C-цепи – что в итоге? |
---|
Резонанс |
• Электрический маятник • Простой параллельный резонанс (колебательный контур) • Простой последовательный резонанс • Применение резонанса • Резонанс в последовательно-параллельных цепях • Добротность и полоса пропускания резонансной цепи |
---|
Сигналы переменного тока смешанной частоты |
• Сигналы переменного тока смешанной частоты - Введение • Прямоугольные волновые сигналы • Другие волновые формы • Подробнее о спектральном анализе • Эффекты в электрических цепях |
---|
Фильтры |
• Что такое фильтр? • Низкочастотные фильтры • Высокочастотные фильтры • Полосовые фильтры • Полосно-заграждающие фильтры • Резонансные фильтры • Подводя итоги по фильтрам |
---|
Трансформаторы |
• Взаимная индуктивность и основные операции • Повышающие и понижающие трансформаторы • Электрическая изоляция • Фазировка • Конфигурации обмотки • Регулировка напряжения • Специальные трансформаторы и приложения • Практические соображения – Трансформаторы |
---|
Многофазные цепи переменного тока |
• Однофазные системы питания • Трёхфазные системы питания • Чередование фаз • Устройство многофазного двигателя • Трёхфазные Y- и дельта-конфигурации • Трёхфазные цепи с трансформатором • Гармоники в многофазных энергосистемах • Гармонические фазовые последовательности |
---|
Коэффициент мощности |
• Мощность в резистивных и реактивных цепях переменного тока • Истинная, реактивная и полная мощность • Расчёт коэффициента мощности • Практическая коррекция коэффициента мощности |
---|
Измерение цепей переменного тока |
• Вольтметры и амперметры переменного тока • Измерение частоты и фазы • Измерение мощности • Измерение качества электроэнергии • Мостовые схемы переменного тока • Измерительные преобразователи переменного тока |
---|
Двигатели переменного тока |
• Введение в двигатели переменного тока • Синхронные двигатели • Синхронный конденсатор • Двигатель с магнитным сопротивлением • Шаговые двигатели • Бесщёточный двигатель постоянного тока • Многофазные асинхронные двигатели Теслы • Асинхронные двигатели с фазным ротором • Однофазные асинхронные двигатели • Прочие специализированные двигатели • Сельсин-двигатели (синхронизированные двигатели) • Коллекторные двигатели переменного тока |
---|
Линии передачи |
• Кабель на 50 Ом? • Электрические цепи и скорость света • Характеристический импеданс • Линии передачи конечной длины • «Длинные» и «короткие» линии передачи • Стоячие волны и резонанс • Преобразование импеданса • Волноводы |
---|
Полупроводники |
---|
Усилители и активные устройства |
• От электрики к электронике • Активные и пассивные устройства • Усилители • Коэффициент усиления • Децибелы • Абсолютные дБ-шкалы • Аттенюаторы |
---|
Теория твердотельных приборов |
• Введение в теорию твердотельных устройств • Квантовая физика • Валентность и кристаллическая структура • Зонная теория твёрдых тел • Электроны и «дырки» • P-N-переход • Полупроводниковые диоды • Транзисторы с биполярным переходом • Полевые транзисторы • Полевые транзисторы с изолированным затвором (MOSFET) • Тиристоры • Методы производства полупроводников • Сверхпроводящие устройства • Квантовые устройства • Полупроводниковые приборы в SPICE |
---|
Диоды и выпрямители |
• Диоды и выпрямители – Введение • Проверка диодов мультиметром • Номинальные характеристики диодов • Схемы выпрямителей • Пиковый детектор • Схемы ограничителей напряжения • Схемы фиксаторов уровня • Умножители напряжения (удвоители, утроители, учетверители и т.д.) • Схемы коммутации индуктивных нагрузок • Диодные схемы коммутации • Что такое диод Зенера (стабилитрон)? • Диоды специального назначения • Прочие диодные технологии • Модели диодов в SPICE |
---|
Биполярные транзисторы |
• Транзисторы с биполярным переходом (ТБП) – Введение • Транзистор с биполярным переходом (ТБП) как переключатель • Проверка транзистора с биполярным переходом (ТБП) с помощью мультиметра • Активный режим работы транзистора с биполярным переходом (ТБП) • Усилительный каскад с общим эмиттером • Усилительный каскад с общим коллектором • Усилительный каскад с общей базой • Каскодный усилитель • Методы смещения для транзисторов с биполярным переходом (ТБП) • Расчёт смещения для транзисторов с биполярным переходом (ТБП) • Взаимодействие входа и выхода в транзисторах с биполярным переходом (ТБП) • Обратная связь в транзисторах с биполярным переходом (ТБП) • Импеданс усилителя • Токовые зеркала в транзисторах с биполярным переходом (ТБП) • Параметры и корпуса транзисторов с биполярным переходом (ТБП) • Особенности транзисторов с биполярным переходом (ТБП) |
---|
Полевые транзисторы |
• Полевые транзисторы (JFET) – Введение • Полевой транзистор (JFET) как переключатель • Проверка полевого транзистора (JFET) с помощью мультиметра • Активный режим работы полевого транзистора (JFET) |
---|
Полевые транзисторы с изолированным затвором |
• Полевые транзисторы с изолированным затвором – Введение • Обедняющие полевые транзисторы с изолированным затвором • Биполярные транзисторы с изолированным затвором |
---|
Тиристоры |
• Гистерезис • Газоразрядные лампы • Диод Шокли (динистор) • DIAC (симметричный динистор) • Управляемый кремниевый выпрямитель (SCR-тиристор) • TRIAC (симметричный тринистор, триак) • Оптотиристоры • Однопереходной транзистор • Управляемый кремниевый коммутатор (SCS-тиристор) • Тиристоры с полевым управлением |
---|
Операционные усилители |
• Операционные усилители (ОУ) – Введение • Несимметричные и дифференциальные усилители • «Операционный» усилитель • Отрицательная обратная связь • Делитель напряжения в цепи обратной связи • Аналогия для делителя напряжения в цепи обратной связи • Преобразование сигнала напряжения в сигнал тока • Схемы усреднителя и сумматора • Построение дифференциальных усилителей • Инструментальный (измерительный) усилитель • Схемы дифференциатора и интегратора • Положительная обратная связь • Практические аспекты ОУ • Модели операционных усилителей |
---|
Практические аналоговые полупроводниковые схемы |
• Электростатический разряд • Схемы источников питания • Схемы усилителей • Осцилляторные схемы • Радиосхемы • Вычислительные схемы • Измерительные схемы |
---|
Приводы двигателей постоянного тока |
• Широтно-импульсная модуляция |
---|
Электронные лампы |
• Электронные лампы – Введение • История электронных ламп – с чего всё началось • Триод • Тетрод • Силовой лучевой тетрод • Пентод • Комбинированные электронные лампы • Характеристики электронных ламп • Ионизированные (газовые) электронные лампы • Индикаторные электронные лампы • Микроволновые электронные лампы • Сравниваем электронные лампы и полупроводники |
---|
Цифровая электроника |
---|
Системы счисления |
• Числа и способы их выражения • Системы счисления • Сравниваем десятеричные и двоичные числа • Восьмеричная и шестнадцатеричная системы счисления • Восьмеричные и шестнадцатеричные числа преобразовываем в десятеричные • Преобразование из десятеричной системы счисления |
---|
Двоичная арифметика |
• Числа и системы счисления • Двоичное сложение • Отрицательные двоичные числа • Двоичное вычитание • Двоичное переполнение • Наборы битов |
---|
Логические вентили |
• Цифровые сигналы и вентили • Вентили «НЕ» • «Буферные» вентили • Вентили с более чем одним входом • Транзисторно-транзисторная логика вентилей «И-НЕ» и «И» • Транзисторно-транзисторная логика вентилей «ИЛИ-НЕ» и «ИЛИ» • Схемы КМОП-вентилей • Специальные выходы в вентилях • Универсальность вентилей «И-НЕ» и «ИЛИ-НЕ» • Уровни напряжения для «высоких» и «низких» логических сигналов • Вентильные DIP корпусы |
---|
Переключатели |
• Типы переключателей • Как устроены контакты переключателей • «Нормальное» состояние контакта и последовательное замыкание/размыкание • «Дребезжание» контактов |
---|
Электромеханические реле |
• Устройство реле • Контакторы • Реле с задержкой времени • Защитные реле • Твердотельные реле |
---|
Релейная логика |
• «Лестничные» диаграммы • Функции цифровой логики • Разрешающие и блокирующие схемы • Схемы управления двигателем • Отказоустойчивость • Программируемые логические контроллеры (ПЛК) |
---|
Булева алгебра |
• Булева алгебра – Введение • Логическая арифметика • Булевы алгебраические тождества • Булевы алгебраические свойства • Логические правила для упрощения • Примеры упрощения схем • Функция «Исключающее ИЛИ»: вентиль XOR • Законы де Моргана • Преобразование таблиц истинности в логические выражения |
---|
Карты Карно |
• Карты Карно – Введение • Диаграммы Венна и множества • Булевы соотношения на диаграммах Венна • Преобразование диаграмм Венна в карты Карно • Карты Карно, таблицы истинности и логические выражения • Упрощение логики с помощью карт Карно • Бо́льшие карты Карно с 4-мя переменными • Минтермы и макстермы в реализациях • Обозначения сумм и произведений • Поля «безразличия» на картах Карно • Бо́льшие карты Карно с 5-ю и 6-ю переменными |
---|
Функции комбинационной логики |
• Функции комбинационной логики – Введение • Неполный сумматор • Полный сумматор • Декодер • Кодер • Демультиплексоры • Мультиплексоры • Совместное использование множественных комбинационных схем |
---|
Мультивибраторы |
• Цифровая логика с обратной связью • SR-защёлка • Вентильная SR-защёлка • D-защёлка • Защёлки с запуском по фронту сигнала: триггеры • JK-триггер • Триггеры с асинхронными входами • Моностабильные мультивибраторы |
---|
Схемы последовательностей |
• Двоичная счётная последовательность • Асинхронные счётчики • Синхронные счётчики • Конечные автоматы |
---|
Сдвиговые регистры |
• Сдвиговые регистры – Введение • Сдвиговые регистры: последовательный вход, последовательный выход (SISO) • Сдвиговые регистры: параллельный вход, последовательный выход (PISO) • Сдвиговые регистры: последовательный вход, параллельный выход (SIPO) • Универсальные сдвиговые регистры: параллельный вход, параллельный выход (PIPO) • Кольцевые счётчики |
---|
Цифро-аналоговые и аналого-цифровые преобразования |
• Цифро-аналоговые (ЦАП) и аналого-цифровые (АЦП) преобразования – Введение • ЦАП R/2nR: цифро-аналоговый преобразователь с двоично-взвешенным входом • ЦАП R/2R: (цифро-аналоговый преобразователь) • Параллельные АЦП • Цифровые ступенчатые АЦП • АЦП с последовательным приближением • Отслеживающий АЦП • Скатные (интегрирующие) АЦП • Дельта-сигма АЦП • Практические аспекты схем АЦП |
---|
Цифровая связь |
• Цифровая связь – Введение • Сети и шины • Потоки данных • Типы электрических сигналов • Оптическая передача данных • Топология сети • Сетевые протоколы • Практические аспекты цифровой связи |
---|
Цифровое хранилище (память) |
• Почему «цифровое»? • Понятия и концепции цифровой памяти • Современная немеханическая память • Устаревшие немеханические технологии памяти • Постоянное запоминающее устройство (ПЗУ) • Память с движущимися частями: «Приводы» |
---|
Принципы цифровых вычислений |
• Двоичный сумматор • Таблицы поиска • Конечные автоматы • Микропроцессоры • Микропроцессорное программирование |
---|
Справочные материалы |
---|
Полезные уравнения и коэффициенты пересчёта |
• Уравнения и законы для цепей постоянного тока • Правила последовательных цепей • Правила параллельных цепей • Эквивалентные значения компонентов в последовательных и параллельных цепях • Уравнение ёмкости конденсатора • Уравнение катушки индуктивности • Уравнения постоянной времени • Уравнения цепей переменного тока • Уравнения для децибел • Метрические приставки и преобразования единиц измерения |
---|
Цветовая маркировка |
• Цветовая маркировка резисторов • Цветовая маркировка проводки • Инфографика цветовой маркировки проводки |
---|
Таблицы проводников и диэлектриков |
• Таблица калибров медной проволоки • Таблица допустимых нагрузок для медного провода • Коэффициенты удельного сопротивления • Таблица температурных коэффициентов сопротивления • Критические температуры для сверхпроводников • Диэлектрическая прочность изоляторов |
---|
Справочник по алгебре |
• Основные алгебраические тождества • Основные свойства арифметики • Свойства степеней • Извлечение корней • Важные константы • Логарифмы • Формулы сокращённого умножения • Квадратное уравнение • Прогрессии • Факториалы • Решение систем уравнений: метод подстановки и метод сложения |
---|
Справочник по тригонометрии |
• Тригонометрия прямоугольного треугольника • Тригонометрия произвольного треугольника • Тригонометрические формулы • Гиперболические функции |
---|
Справочник по исчислению |
• Формулы вычисления пределов • Производная числа • Общие производные • Производные показательных функций с основанием e • Производные простых тригонометрических функций • Правила вычисления производных • Первообразная (неопределённый интеграл) • Общие первообразные • Первообразные показательных функций от числа e • Правила вычисления первообразных • Определённые интегралы и основная теорема исчисления • Дифференциальные уравнения |
---|
Использование программы SPICE для моделирования электрических схем |
• Программа моделирования электрических цепей SPICE — Введение • История программы SPICE • Основы программирования в SPICE • Интерфейс командной строки • Компоненты электрических схем • Опции для проведения анализа • Странные особенности программы SPICE • Примеры электрических цепей и списков связей |
---|
Устранение неполадок – теория и практика |
• Вопросы, которые следует задать, прежде чем продолжить • Общие советы по устранению неполадок • Конкретные методы устранения неполадок • Вероятные сбои в проверенных системах • Вероятные сбои в непроверенных системах • Возможные ментальные ловушки |
---|
Схематические обозначения элементов цепи |
• Провода и соединения • Источники питания • Типы резисторов • Типы конденсаторов • Катушки индуктивности • Взаимные катушки индуктивности • Переключатели с ручным управлением • Управляемые процессом переключатели • Переключатели с электрическим приводом (реле) • Соединители • Диоды • Биполярные транзисторы • Переходные транзисторы с полевым эффектом (JFET) • Транзисторы с полевым эффектом с изолированным затвором (IGFET или MOSFET) • Гибридные транзисторы • Тиристоры • Интегральные схемы • Электронные лампы |
---|
Периодическая таблица химических элементов |
• Таблица Менделеева |
---|
Эксперименты |
---|
Введение |
• Электроника как точная наука • Обустраиваем домашнюю лабораторию |
---|
Основные концепции и испытательное оборудование |
• Использование вольтметра • Использование омметра • Очень простая схема • Использование амперметра при измерении силы тока • Закон Ома • Нелинейное сопротивление • Рассеяние мощности • Цепь с переключателем • Эксперимент по электромагнетизму • Эксперимент с электромагнитной индукцией |
---|
Электрические цепи постоянного тока |
• Электрические цепи постоянного тока – Введение • Последовательные источники питания • Параллельные источники питания • Делитель напряжения • Делитель тока • Потенциометр как делитель напряжения • Потенциометр как реостат • Прецизионный потенциометр • Ограничение диапазона реостата • Термоэлектричество • Мультиметр своими руками • Чувствительный детектор напряжения • Потенциометрический вольтметр • 4-проводное измерение сопротивления • Простейший компьютер • Картошка-батарейка • Зарядка и разрядка конденсатора • Индикатор скорости изменения |
---|
Электрические цепи переменного тока |
• Электрические цепи переменного тока – Введение • Трансформатор – блок питания • Сборка трансформатора • Переменный индуктор • Чувствительный аудиодетектор • Обнаружение магнитных полей переменного тока • Обнаружение электрических полей переменного тока • Альтернатор – автомобильный генератор • Асинхронный двигатель • Асинхронный двигатель побольше • Фазовый сдвиг • Погашение звука • Музыкальный синтезатор как генератор сигналов • ПК-осциллограф • Анализ волновых сигналов • Колебательный контур • Сигнальная связь |
---|
Дискретные полупроводниковые схемы |
• Дискретные полупроводниковые схемы – Введение • Коммутирующий диод • Полупериодный выпрямитель • Двухполупериодный мостовой выпрямитель • Двухполупериодный выпрямитель с центральным отводом • Цепь «выпрямитель/фильтр» • Регулятор напряжения • Транзистор как переключатель • Датчик статического электричества • Датчик импульсного света • Повторитель напряжения • Усилитель с общим эмиттером • Многокаскадный усилитель • Как построить схему токового зеркала • JFET – регулятор тока • Дифференциальный усилитель • Простой операционный усилитель • Аудио осциллограф • Ламповый аудио усилитель |
---|
Аналоговые интегральные схемы |
• Аналоговые интегральные схемы – Введение • Компаратор напряжения • Прецизионный повторитель напряжения • Неинвертирующий усилитель • Высокоимпедансный вольтметр • Интегратор • Аудио осциллограф на таймерной схеме 555 • Наклонный генератор на таймерной схеме 555 • ШИМ-контроллер мощности • Аудиоусилитель класса B |
---|
Цифровые интегральные схемы |
• Цифровые интегральные схемы – Введение • Основная функция вентилей • SR-защёлка на основе вентилей «ИЛИ-НЕ» • SR-защёлка на основе вентиля «И-НЕ» с входом разрешения • SR-триггер на основе вентиля «И-НЕ» • Светодиодный секвенсор • Простейший кодовый замок • 3-битный двоичный счётчик • 7-сегментный дисплей |
---|
Таймерные схемы 555 |
• Интегральный таймер 555 • Триггер Шмитта на интегральном таймере 555 • Гистерезисный осциллограф на интегральном таймере 555 • Моностабильный мультивибратор на интегральном таймере 555 • Минимальное количество комплектующих для КМОП-схемы 555 проблескового прибора длительного действия на красных светодиодах • КМОП-схема 555 проблескового прибора длительного действия на синих светодиодах • КМОП-схема 555 проблескового прибора длительного действия на светодиодах обратного хода • КМОП-схема 555 проблескового прибора длительного действия на красных светодиодах |
---|