Перевод: Макаров В. (valemak)
Проверка/Оформление/Редактирование: Мякишев Е.А.
Предохранители[1]
Обычно ещё при проектировании электрических схем исключается ситуация, когда происходит превышение допустимой токовой нагрузки. Но иногда превышение является возможным, ожидаемым фактором: в таких случаях безопасность цепи обеспечивают предохранители.
Что такое предохранитель?
Предохранитель – это электрическое защитное устройство, в общем случае это короткий участок провода, который в случае превышения допустимого тока плавится/обрывается в результате чего происходит размыкание цепи. Плавкие предохранители всегда соединены последовательно с элементом(-ами), если необходима защита от токовых перегрузок. В аварийной ситуации предохранитель перегорает, сеть размыкается, ток в цепи больше не проходит через элемент(-ы). Плавкий предохранитель, включённый в одну ветвь параллельной цепи, конечно же, остановит ток только в своей ветке и не повлияет на ток в других ответвлениях.
Обычно тонкий кусок плавкой проволоки помещается в защитную оболочку, что сводит к минимуму опасность дугового разряда при сильном прорыве, как это может случиться в цепях со сверхтоками. В небольших автомобильных предохранителях оболочка прозрачная, что позволяет на глазок оценить работоспособность элемента. В бытовой электропроводке обычно используются резьбовые предохранители со стеклянным корпусом и тонкой узкой полосой из металлической фольги внутри. Фотография, показывающая оба типа предохранителей:
Рис. 1. Два наиболее часто используемых типа предохранителя – стеклянный и резьбовый. Ручка для сравнения.
Есть ещё катриджные (кассетные) предохранители, часто используются в автомобилях и в промышленности, в качестве оболочки используется не стекло, а другие материалы. Поскольку предохранители предназначены для размыкания при отказе в случае превышения номинального тока, подразумевается возможность их лёгкой замены в цепи. Это значит, что они должны быть не припаяны и даже каким-то образом не вкручены, а лучше если они быстро вставляются в специальный держатель (и также быстро изымаются из него). На следующей фотографии изображена пара стеклянных предохранителей, подключаемых к цепи через держатель, рассчитанный на 8 предохранителей:
Рис. 2. Вставка стеклянных предохранителей в держатель (мульти-предохранитель).
Предохранители удерживаются пружинными металлическими зажимами, сами зажимы постоянно подсоединены к цепи. Основной корпус держателя (его ещё называют блоком предохранителей) делается из надёжного диэлектрика.
Есть ещё предохранители с держателем кассетного типа. Такие обычно используется для установки в панелях управления оборудованием, где желательно сделать недоступными для людей точки электрических контактов. В отличие блока предохранителей, где все металлические зажимы в открытом доступе, этот тип держателя предохранителя полностью закрывает предохранитель в изолирующем корпусе:
Рис. 3. Кассетный держатель с помощью изолирующего корпуса исключает возможность контакта человека с точками подсоединения предохранителя к цепи.
Наиболее распространённым устройством защиты от сверхтоков в сильноточных цепях сегодня является автоматический выключатель.
Что такое автоматический выключатель?
Автоматические выключатели – это специально разработанные переключатели, которые автоматически размыкаются для отключения тока в случае перегрузок. Малые автоматические выключатели используются в жилых домах, офисах и небольших промышленных предприятиях. Система управления в таких предохранителях основана на термическом принципе работы. Они содержат тонкую биметаллическую (то есть, состоящую из двух металлов, соединенных друг с другом) полоску, по которой проходит ток. Эта полоска изгибается при нагревании. Когда биметаллическая полоса испытывает определённое механическое напряжение (вследствие чрезмерного нагрева), срабатывает механизм отключения, прерыватель размыкается. Автоматические выключатели большего размера активируются за счёт магнитного поля, создаваемое токонесущими проводниками внутри выключателя. Или же срабатывают под воздействием внешних устройств, контролирующих ток в цепи (подобные устройства называются защитными реле).
Автоматические выключатели не выходят из строя в условиях токовых перегрузок – они просто размыкаются и могут быть повторно включены путем перемещения рычага. Выключенное состояние быстро обнаруживается визуально, что делает автоматические выключатели более удобными и надёжными, чем одноразовые предохранители. Вот фотография малого автоматического выключателя:
Рис. 4. Малый автоматический выключатель.
На первый взгляд это просто обычный переключатель (и, действительно, именно в таком качестве его тоже можно использовать). Однако его настоящее предназначение – срабатывать как средство защиты от токовых перегрузок.
Следует отметить, что в некоторых автомобилях используются устройства, известные как плавкие вставки, для защиты от токовых перегрузок в цепи зарядки аккумулятора. Это гораздо дешевле, чем использовать предохранитель и держатель под него соответствующего номинала. Плавкая вставка – это примитивный предохранитель, просто короткий кусок провода с резиновой изоляцией, который плавится в случае токовой перегрузки, при этом какой-либо изолирующий корпус отсутствует. Такие грубые и потенциально опасные устройства никогда не используются в промышленности или даже в жилых помещениях, так как в этих случаях гораздо более высокие уровни напряжения и тока. По мнению автора, их применение даже в автомобильных цепях – крайне сомнительный подход.
На электрических схемах предохранители обозначаются в виде S-образную кривой:
Рис. 5. S-образная кривая на схеме обозначает предохранитель.
Номиналы предохранителей
Предохранители, в основном, рассчитаны на определённые силы тока: т.е. их номиналы измеряются в амперах. Их работа зависит от самовыделения тепла в случае чрезмерной силы тока за счёт собственного электрического сопротивления. Тем не менее они спроектированы так, чтобы вносить незначительное дополнительное сопротивление в цепи, которые они защищают. Это достигается за счёт того, что плавкий провод делается как можно короче. Допустимая токовая нагрузка обычного провода не связана с его длиной (сплошной медный провод 10 калибра выдерживает силу тока в 40 ампер на открытом воздухе, независимо от того, длинный отрезок или короткий), поэтому плавкий провод из определённого материала и соответствующего калибра будет плавиться при определённом токе независимо от того, какая длина у проволоки. Поскольку длина не является определяющим фактором, чем короче будет предохранительный отрезок, тем меньшее дополнительное сопротивление принесёт предохранитель в цепь.
Однако также до́лжно учитывать, что происходит после сгорания предохранителя: оплавленные концы некогда сплошного провода будут разделены воздушным зазором с полным напряжением питания между концами. Если предохранитель недостаточно длинный в цепи высокого напряжения, искра может перескочить с одного конца расплавленного провода на другой, в результате чего цепь снова замкнётся:
Рис. 6. Принципиальная схема с предохранителем.
Рис. 7. Принципиальная схема с предохранителем недостаточной длины.
Следовательно, предохранители рассчитываются с учётом их допустимого напряжения, а также уровня тока, при котором они сработают.
Некоторые большие промышленные предохранители имеют сменные элементы проводов для снижения затрат. Корпус такого предохранителя – непрозрачный картридж многоразового использования, который защищает как сам провод предохранителя от внешних воздействий, так и окружающие предметы от самого провода, который может заискрить или воспламениться.
Текущий номинал предохранителя – это нечто большее, чем просто цифра. Если через предохранитель, рассчитанный на 30 ампер, проходит ток силой в 35 ампер, предохранитель может сработать как сразу, так и с некоторой задержкой, в зависимости от того, как он сконструирован. Некоторые предохранители предназначены для очень быстрого срабатывания, в то время как другие рассчитаны на замедленную реакцию, в зависимости от области применения. «Замедленные» предохранители иногда называют инерционные предохранители, из-за того, что в их характеристики специально заложено время некоторой задержки.
Классическим примером применения плавких предохранителей с задержкой срабатывания является защита электродвигателей, при которой пусковые токи, в десять раз превышающие нормальный рабочий ток, обычно возникают каждый раз, когда двигатель только-только запускается. Если бы в этом случае использовались быстродействующие предохранители, двигатель вообще никогда бы не запустился, потому что при нормальных уровнях пускового тока плавкий предохранитель всё время немедленно перегорал бы! Конструкция плавкого предохранителя такова, что элемент плавкого предохранителя имеет бо́льшую массу (но не бо́льшую допустимую токовую нагрузку), чем эквивалентный быстродействующий плавкий предохранитель, что означает, что он будет нагреваться медленнее (но до той же конечной температуры) для любого заданного количества тока.
На другом конце спектра действия предохранителей находятся так называемые полупроводниковые предохранители, предназначенные для крайне быстрого размыкания в случае токовой перегрузки. Полупроводниковые устройства, такие как транзисторы, как правило, особенно нетерпимы к токовым перегрузкам и требуют мгновенной защиты от сверхтоков.
В заземлённых системах всегда предполагается размещение предохранителей на «горячей» стороне нагрузки (то есть, на участке цепи, откуда из источника питания начинает течь ток, пока ещё не достигший участка с нагрузкой. По-русски этот участок цепи принято называть фазой. Провод, из которого ток от нагрузки возвращается к источнику напряжения, по-русски принято называть нулём). Это сделано для того, чтобы нагрузка была гарантированно полностью обесточена после срабатывания предохранителя. Чтобы увидеть разницу между размещением предохранителя на «горячей» (фазе) и «нейтральной» (нуле) стороне по отношению к нагрузке, внимательно сравните эти две схемы:
Рис. 8. Предохранитель установлен на «горячей» стороне (фазе) по отношению к нагрузке. В случае заземления человеку, имеющему контакт с разомкнутой цепью, ничего не угрожает.
Рис. 9. Предохранитель установлен на «нейтральной» стороне (нуле) по отношению к нагрузке. В случае заземления человек, имеющий контакт с разомкнутой цепью, будет поражён электрическим током.
В обоих случаях предохранитель успешно прервал ток, идущий через нагрузку, но на нижней схеме потенциально опасное напряжение с любой стороны нагрузки в случае заземления не прервано, что может быть фатально для человека, имеющего контакт с цепью. Верхняя схема гораздо безопаснее.
Как уже упоминалось, предохранители – не единственный способ защиты от сверхтоков. Чаще для размыкания цепей с чрезмерным током используются переключатели, называемые автоматическими выключателями. Их популярность обусловлена тем, что они не саморазрушаются в процессе размыкания цепи, в отличие от предохранителей. Тем не менее, в любом случае размещение устройства защиты от сверхтоков в цепи должно соответствовать тому же принципу, разобранному в предыдущем абзаце: «предохранять» нужно в той стороне от источника питания, где нет заземления.
В принципе, защита от перегрузок в некоторой степени снижает опасность того, что кого-то ударит током. Тем не менее следует максимально чётко и предельно ясно понимать, что подобные предохранительные устройства изначально не предназначены для защиты людей от поражения электрическим током. Ни предохранители, ни автоматические выключатели НЕ отключаются в случае поражения электрическим током; скорее, они предназначены чтобы сработать в случае потенциального перегрева провода. Устройства, регулирующие максимальный ток, в первую очередь защищают проводники в цепи от повреждений из-за перегрева (и опасности возгорания, связанной с чрезмерно горячими проводами). Во-вторых, предохранители защищают определённые части оборудования, такие как нагрузки и генераторы (некоторые быстродействующие предохранители предназначены для защиты особенно чувствительных электронных устройств к скачкам силы тока). Поскольку уровень силы тока, необходимого для поражения электрическим током, намного ниже, чем нормальные токовые уровни обычных силовых нагрузок, состояние токовой перегрузки обычно не возникает, если поразило человека. Существуют и другие устройства, предназначенные для обнаружения определённых признаков удара током (наиболее популярны детекторы заземления), но подобные устройства служат именно для этой единственной цели (защитить людей) и не связаны с защитой проводов от перегрева.
Итог
- Предохранитель – это короткий, тонкий участок провода, который в случае чрезмерного тока плавится и размыкает электрическую цепь.
- Автоматический выключатель – это специально сконструированный переключатель, который автоматически срабатывает, прерывая ток в цепи в случае токовой перегрузки. Подобные устройства могут «отключаться» (размыкаться) в результате термического воздействия (перегрева), под влиянием магнитного поля или в результате воздействия внешних устройств, называемых «защитными реле» (в общем, принцип действия зависит от особенностей конструкции, размера самого устройства и сферы применения).
- Предохранители в первую очередь рассчитываются с точки зрения максимально допустимой силы тока, но также оцениваются с точки зрения того, какое падение напряжения они смогут безопасно выдерживать после прерывания цепи.
- Предохранители могут быть сконструированы так, чтобы срабатывать быстро, медленно или где-то посередине (не слишком быстро, не слишком медленно) при одинаковом максимально допустимом уровне тока.
- Лучшее место для установки предохранителя в заземлённой электросети – на участке между незаземлённым проводником и нагрузкой. Таким образом, при сгорании предохранителя, к нагрузке будет подсоединён только заземленный (безопасный) провод, что значительно уменьшит опасность для жизни и здоровья людей, оказавшихся поблизости.
См.также
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|
Внешние ссылки
Теория по электронике |
---|
Постоянный ток |
---|
Основные концепты электричества |
• Статическое электричество • Проводники, диэлектрики и поток электронов • Что такое электрические цепи? • Напряжение и электроток • Сопротивление • Напряжение и электроток в реальной цепи • Условный ток и поток электронов |
---|
Закон Ома |
• Закон Ома – Как напряжение, сила тока и сопротивление связаны друг с другом • Аналогия для закона Ома • Мощность в электрических цепях • Расчёт электрической мощности • Резисторы • Нелинейная проводимость • Построение цепи • Полярность перепада напряжения • Компьютерная симуляция электрических цепей |
---|
Правила электробезопасности |
• Важность правил электробезопасности • Воздействие электричества на психологическое состояние • Путь, который ток проходит перед ударом • Закон Ома (снова!) • Техника безопасности • Первая медицинская помощь при ударе током • Распространённые источники опасности • Проектирование электроцепей с учётом требований безопасности • Безопасное использование приборов для измерения электрических показателей • Данные о влиянии удара током на тело человека |
---|
Экспоненциальная запись и метрические приставки |
• Экспоненциальная запись • Арифметические операции для экспоненциальной записи • Метрические обозначения • Преобразование метрических приставок • Используем ручной калькулятор • Экспоненциальная форма в программе SPICE |
---|
Последовательные и параллельные электрические цепи |
• Что такое «последовательные» и «параллельные» электрические цепи • Простая последовательная цепь • Простая параллельная цепь • Электропроводность • Рассчитываем мощность • Правильно используем закон Ома • Анализ отказов компонентов цепи • Строим простые резистивные цепи |
---|
Схемы с делителями напряжения и правила Кирхгофа |
• Схемы с делителем напряжения • Правило напряжений Кирхгофа (ПНК) • Цепи – делители тока и формула делителя тока • Правило Кирхгофа для силы тока (ПКТ) |
---|
Комбинированные последовательно-параллельные схемы |
• Что такое последовательно-параллельная цепь • Методы анализа последовательно-параллельных резисторных цепей • Перерисовываем избыточно усложнённые схемы • Анализ отказов компонентов (продолжение) • Построение простых резисторных цепей |
---|
Измерения в электрических цепях постоянного тока |
• Что такое измеритель? • Как устроен вольтметр • Как вольтметр влияет на измеряемую цепь • Как устроен амперметр • Как амперметр влияет на измеряемую цепь • Как устроен омметр • Высоковольтный омметр • Мультиметры • Кельвиновское 4-проводное измерение сопротивления • Мостовые схемы • Как устроен ваттметр • Как самостоятельно сделать ручной калибратор |
---|
Сигналы электрического оборудования |
• Аналоговые и цифровые сигналы • Системы сигналов напряжения • Системы сигналов силы тока • Тахогенераторы • Теромопары • Измерения pH • Тензодатчики |
---|
Анализ сети постоянного тока |
• Что такое сетевой анализ? • Метод токов ветвей • Аналитический метод контурных токов • Метод узловых потенциалов • Введение в сетевые теоремы • Теорема Миллмана • Теорема о суперпозиции • Теорема Тевенена • Теорема Нортона • Эквивалентность схем Тевенена и Нортона • И вновь о теореме Миллмана • Теорема о передаче максимальной мощности • Δ-Y и Y-Δ преобразования |
---|
Батареи и системы питания |
• Поведение электронов при химических реакциях • Батарейные конструкции • Рейтинг батарей • Батареи специального назначения • Практические рекомендации при использовании батарей |
---|
Физика проводников и диэлектриков |
• Введение в физику проводников и диэлектриков • Размеры проводов• Допустимые токовые нагрузки на провода • Предохранители • Удельное сопротивление • Температурный коэффициент сопротивления • Сверхпроводимость • Пробивное напряжение диэлектрика |
---|
Конденсаторы |
• Электрическое поле и ёмкость • Конденсаторы и дифференциальное исчисление • Факторы, влияющие на ёмкость конденсатора • Последовательное и параллельное соединение конденсаторов • Практические соображения - Конденсаторы |
---|
Магнетизм и электромагнетизм |
• Постоянные магниты • Электромангетизм • Единицы измерения магнитных величин • Магнитная проницаемость и насыщение • Электромагнитная индукция • Взаимная индукция |
---|
Катушки индуктивности |
• Магнитные поля и индуктивность • Катушки индуктивности и дифференциальное исчисление • Факторы, влияющие на индуктивность • Катушки индуктивности в последовательных и параллельных соединениях • Практические соображения – Катушки индуктивности |
---|
Постоянные времени в RC и L/R цепях |
• Переходные процессы в электрических цепях • Переходные процессы в цепях с конденсатором • Переходные процессы в цепях с катушкой индуктивности • Расчёт напряжения и силы тока • Почему L/R, а не LR? • Комплексные расчёты напряжения и тока • Сложные схемы • Расчёт неизвестного времени |
---|
Переменный ток |
---|
Основы теории переменного тока |
• Что такое переменный ток? • Формы волн переменного тока • Измерение величин переменного тока • Расчёт простейшей цепи переменного тока • Фаза переменного тока • Принципы радио |
---|
Комплексные числа |
• Введение в комплексные числа • Векторы и волны переменного тока • Сложение простых векторов • Сложение сложных векторов • Полярная и алгебраическая запись комплексных чисел • Арифметика комплексных чисел • И ещё по поводу полярности переменного тока • Несколько примеров с цепями переменного тока |
---|
Реактанс и импеданс – Индуктивность |
• Резистор в цепи переменного тока (Индуктивность) • Катушка индуктивности в цепи переменного тока • Последовательные резистивно-индуктивные цепи • Параллельные резистивно-индуктивные цепи • Особенности катушек индуктивности • Что такое «скин-эффект»? |
---|
Реактанс и импеданс – Ёмкость |
• Резистор в цепи переменного тока (Ёмкость) • Конденсатор в цепи переменного тока • Последовательные резистивно-ёмкостные цепи • Параллельные резистивно-ёмкостные цепи • Особенности конденсаторов |
---|
Реактанс и импеданс – R/L/C-цепи |
• Обзор R, X и Z (сопротивление, реактанс и импеданс) • Последовательные R/L/C-цепи • Параллельные R/L/C-цепи • Последовательно-параллельные R/L/C-цепи • Реактивная проводимость и адмиттанс • R/L/C-цепи – что в итоге? |
---|
Резонанс |
• Электрический маятник • Простой параллельный резонанс (колебательный контур) • Простой последовательный резонанс • Применение резонанса • Резонанс в последовательно-параллельных цепях • Добротность и полоса пропускания резонансной цепи |
---|
Сигналы переменного тока смешанной частоты |
• Сигналы переменного тока смешанной частоты - Введение • Прямоугольные волновые сигналы • Другие волновые формы • Подробнее о спектральном анализе • Эффекты в электрических цепях |
---|
Фильтры |
• Что такое фильтр? • Низкочастотные фильтры • Высокочастотные фильтры • Полосовые фильтры • Полосно-заграждающие фильтры • Резонансные фильтры • Подводя итоги по фильтрам |
---|
Трансформаторы |
• Взаимная индуктивность и основные операции • Повышающие и понижающие трансформаторы • Электрическая изоляция • Фазировка • Конфигурации обмотки • Регулировка напряжения • Специальные трансформаторы и приложения • Практические соображения – Трансформаторы |
---|
Многофазные цепи переменного тока |
• Однофазные системы питания • Трёхфазные системы питания • Чередование фаз • Устройство многофазного двигателя • Трёхфазные Y- и дельта-конфигурации • Трёхфазные цепи с трансформатором • Гармоники в многофазных энергосистемах • Гармонические фазовые последовательности |
---|
Коэффициент мощности |
• Мощность в резистивных и реактивных цепях переменного тока • Истинная, реактивная и полная мощность • Расчёт коэффициента мощности • Практическая коррекция коэффициента мощности |
---|
Измерение цепей переменного тока |
• Вольтметры и амперметры переменного тока • Измерение частоты и фазы • Измерение мощности • Измерение качества электроэнергии • Мостовые схемы переменного тока • Измерительные преобразователи переменного тока |
---|
Двигатели переменного тока |
• Введение в двигатели переменного тока • Синхронные двигатели • Синхронный конденсатор • Двигатель с магнитным сопротивлением • Шаговые двигатели • Бесщёточный двигатель постоянного тока • Многофазные асинхронные двигатели Теслы • Асинхронные двигатели с фазным ротором • Однофазные асинхронные двигатели • Прочие специализированные двигатели • Сельсин-двигатели (синхронизированные двигатели) • Коллекторные двигатели переменного тока |
---|
Линии передачи |
• Кабель на 50 Ом? • Электрические цепи и скорость света • Характеристический импеданс • Линии передачи конечной длины • «Длинные» и «короткие» линии передачи • Стоячие волны и резонанс • Преобразование импеданса • Волноводы |
---|
Полупроводники |
---|
Усилители и активные устройства |
• От электрики к электронике • Активные и пассивные устройства • Усилители • Коэффициент усиления • Децибелы • Абсолютные дБ-шкалы • Аттенюаторы |
---|
Теория твердотельных приборов |
• Введение в теорию твердотельных устройств • Квантовая физика • Валентность и кристаллическая структура • Зонная теория твёрдых тел • Электроны и «дырки» • P-N-переход • Полупроводниковые диоды • Транзисторы с биполярным переходом • Полевые транзисторы • Полевые транзисторы с изолированным затвором (MOSFET) • Тиристоры • Методы производства полупроводников • Сверхпроводящие устройства • Квантовые устройства • Полупроводниковые приборы в SPICE |
---|
Диоды и выпрямители |
• Диоды и выпрямители – Введение • Проверка диодов мультиметром • Номинальные характеристики диодов • Схемы выпрямителей • Пиковый детектор • Схемы ограничителей напряжения • Схемы фиксаторов уровня • Умножители напряжения (удвоители, утроители, учетверители и т.д.) • Схемы коммутации индуктивных нагрузок • Диодные схемы коммутации • Что такое диод Зенера (стабилитрон)? • Диоды специального назначения • Прочие диодные технологии • Модели диодов в SPICE |
---|
Биполярные транзисторы |
• Транзисторы с биполярным переходом (ТБП) – Введение • Транзистор с биполярным переходом (ТБП) как переключатель • Проверка транзистора с биполярным переходом (ТБП) с помощью мультиметра • Активный режим работы транзистора с биполярным переходом (ТБП) • Усилительный каскад с общим эмиттером • Усилительный каскад с общим коллектором • Усилительный каскад с общей базой • Каскодный усилитель • Методы смещения для транзисторов с биполярным переходом (ТБП) • Расчёт смещения для транзисторов с биполярным переходом (ТБП) • Взаимодействие входа и выхода в транзисторах с биполярным переходом (ТБП) • Обратная связь в транзисторах с биполярным переходом (ТБП) • Импеданс усилителя • Токовые зеркала в транзисторах с биполярным переходом (ТБП) • Параметры и корпуса транзисторов с биполярным переходом (ТБП) • Особенности транзисторов с биполярным переходом (ТБП) |
---|
Полевые транзисторы |
• Полевые транзисторы (JFET) – Введение • Полевой транзистор (JFET) как переключатель • Проверка полевого транзистора (JFET) с помощью мультиметра • Активный режим работы полевого транзистора (JFET) |
---|
Полевые транзисторы с изолированным затвором |
• Полевые транзисторы с изолированным затвором – Введение • Обедняющие полевые транзисторы с изолированным затвором • Биполярные транзисторы с изолированным затвором |
---|
Тиристоры |
• Гистерезис • Газоразрядные лампы • Диод Шокли (динистор) • DIAC (симметричный динистор) • Управляемый кремниевый выпрямитель (SCR-тиристор) • TRIAC (симметричный тринистор, триак) • Оптотиристоры • Однопереходной транзистор • Управляемый кремниевый коммутатор (SCS-тиристор) • Тиристоры с полевым управлением |
---|
Операционные усилители |
• Операционные усилители (ОУ) – Введение • Несимметричные и дифференциальные усилители • «Операционный» усилитель • Отрицательная обратная связь • Делитель напряжения в цепи обратной связи • Аналогия для делителя напряжения в цепи обратной связи • Преобразование сигнала напряжения в сигнал тока • Схемы усреднителя и сумматора • Построение дифференциальных усилителей • Инструментальный (измерительный) усилитель • Схемы дифференциатора и интегратора • Положительная обратная связь • Практические аспекты ОУ • Модели операционных усилителей |
---|
Практические аналоговые полупроводниковые схемы |
• Электростатический разряд • Схемы источников питания • Схемы усилителей • Осцилляторные схемы • Радиосхемы • Вычислительные схемы • Измерительные схемы |
---|
Приводы двигателей постоянного тока |
• Широтно-импульсная модуляция |
---|
Электронные лампы |
• Электронные лампы – Введение • История электронных ламп – с чего всё началось • Триод • Тетрод • Силовой лучевой тетрод • Пентод • Комбинированные электронные лампы • Характеристики электронных ламп • Ионизированные (газовые) электронные лампы • Индикаторные электронные лампы • Микроволновые электронные лампы • Сравниваем электронные лампы и полупроводники |
---|
Цифровая электроника |
---|
Системы счисления |
• Числа и способы их выражения • Системы счисления • Сравниваем десятеричные и двоичные числа • Восьмеричная и шестнадцатеричная системы счисления • Восьмеричные и шестнадцатеричные числа преобразовываем в десятеричные • Преобразование из десятеричной системы счисления |
---|
Двоичная арифметика |
• Числа и системы счисления • Двоичное сложение • Отрицательные двоичные числа • Двоичное вычитание • Двоичное переполнение • Наборы битов |
---|
Логические вентили |
• Цифровые сигналы и вентили • Вентили «НЕ» • «Буферные» вентили • Вентили с более чем одним входом • Транзисторно-транзисторная логика вентилей «И-НЕ» и «И» • Транзисторно-транзисторная логика вентилей «ИЛИ-НЕ» и «ИЛИ» • Схемы КМОП-вентилей • Специальные выходы в вентилях • Универсальность вентилей «И-НЕ» и «ИЛИ-НЕ» • Уровни напряжения для «высоких» и «низких» логических сигналов • Вентильные DIP корпусы |
---|
Переключатели |
• Типы переключателей • Как устроены контакты переключателей • «Нормальное» состояние контакта и последовательное замыкание/размыкание • «Дребезжание» контактов |
---|
Электромеханические реле |
• Устройство реле • Контакторы • Реле с задержкой времени • Защитные реле • Твердотельные реле |
---|
Релейная логика |
• «Лестничные» диаграммы • Функции цифровой логики • Разрешающие и блокирующие схемы • Схемы управления двигателем • Отказоустойчивость • Программируемые логические контроллеры (ПЛК) |
---|
Булева алгебра |
• Булева алгебра – Введение • Логическая арифметика • Булевы алгебраические тождества • Булевы алгебраические свойства • Логические правила для упрощения • Примеры упрощения схем • Функция «Исключающее ИЛИ»: вентиль XOR • Законы де Моргана • Преобразование таблиц истинности в логические выражения |
---|
Карты Карно |
• Карты Карно – Введение • Диаграммы Венна и множества • Булевы соотношения на диаграммах Венна • Преобразование диаграмм Венна в карты Карно • Карты Карно, таблицы истинности и логические выражения • Упрощение логики с помощью карт Карно • Бо́льшие карты Карно с 4-мя переменными • Минтермы и макстермы в реализациях • Обозначения сумм и произведений • Поля «безразличия» на картах Карно • Бо́льшие карты Карно с 5-ю и 6-ю переменными |
---|
Функции комбинационной логики |
• Функции комбинационной логики – Введение • Неполный сумматор • Полный сумматор • Декодер • Кодер • Демультиплексоры • Мультиплексоры • Совместное использование множественных комбинационных схем |
---|
Мультивибраторы |
• Цифровая логика с обратной связью • SR-защёлка • Вентильная SR-защёлка • D-защёлка • Защёлки с запуском по фронту сигнала: триггеры • JK-триггер • Триггеры с асинхронными входами • Моностабильные мультивибраторы |
---|
Схемы последовательностей |
• Двоичная счётная последовательность • Асинхронные счётчики • Синхронные счётчики • Конечные автоматы |
---|
Сдвиговые регистры |
• Сдвиговые регистры – Введение • Сдвиговые регистры: последовательный вход, последовательный выход (SISO) • Сдвиговые регистры: параллельный вход, последовательный выход (PISO) • Сдвиговые регистры: последовательный вход, параллельный выход (SIPO) • Универсальные сдвиговые регистры: параллельный вход, параллельный выход (PIPO) • Кольцевые счётчики |
---|
Цифро-аналоговые и аналого-цифровые преобразования |
• Цифро-аналоговые (ЦАП) и аналого-цифровые (АЦП) преобразования – Введение • ЦАП R/2nR: цифро-аналоговый преобразователь с двоично-взвешенным входом • ЦАП R/2R: (цифро-аналоговый преобразователь) • Параллельные АЦП • Цифровые ступенчатые АЦП • АЦП с последовательным приближением • Отслеживающий АЦП • Скатные (интегрирующие) АЦП • Дельта-сигма АЦП • Практические аспекты схем АЦП |
---|
Цифровая связь |
• Цифровая связь – Введение • Сети и шины • Потоки данных • Типы электрических сигналов • Оптическая передача данных • Топология сети • Сетевые протоколы • Практические аспекты цифровой связи |
---|
Цифровое хранилище (память) |
• Почему «цифровое»? • Понятия и концепции цифровой памяти • Современная немеханическая память • Устаревшие немеханические технологии памяти • Постоянное запоминающее устройство (ПЗУ) • Память с движущимися частями: «Приводы» |
---|
Принципы цифровых вычислений |
• Двоичный сумматор • Таблицы поиска • Конечные автоматы • Микропроцессоры • Микропроцессорное программирование |
---|
Справочные материалы |
---|
Полезные уравнения и коэффициенты пересчёта |
• Уравнения и законы для цепей постоянного тока • Правила последовательных цепей • Правила параллельных цепей • Эквивалентные значения компонентов в последовательных и параллельных цепях • Уравнение ёмкости конденсатора • Уравнение катушки индуктивности • Уравнения постоянной времени • Уравнения цепей переменного тока • Уравнения для децибел • Метрические приставки и преобразования единиц измерения |
---|
Цветовая маркировка |
• Цветовая маркировка резисторов • Цветовая маркировка проводки • Инфографика цветовой маркировки проводки |
---|
Таблицы проводников и диэлектриков |
• Таблица калибров медной проволоки • Таблица допустимых нагрузок для медного провода • Коэффициенты удельного сопротивления • Таблица температурных коэффициентов сопротивления • Критические температуры для сверхпроводников • Диэлектрическая прочность изоляторов |
---|
Справочник по алгебре |
• Основные алгебраические тождества • Основные свойства арифметики • Свойства степеней • Извлечение корней • Важные константы • Логарифмы • Формулы сокращённого умножения • Квадратное уравнение • Прогрессии • Факториалы • Решение систем уравнений: метод подстановки и метод сложения |
---|
Справочник по тригонометрии |
• Тригонометрия прямоугольного треугольника • Тригонометрия произвольного треугольника • Тригонометрические формулы • Гиперболические функции |
---|
Справочник по исчислению |
• Формулы вычисления пределов • Производная числа • Общие производные • Производные показательных функций с основанием e • Производные простых тригонометрических функций • Правила вычисления производных • Первообразная (неопределённый интеграл) • Общие первообразные • Первообразные показательных функций от числа e • Правила вычисления первообразных • Определённые интегралы и основная теорема исчисления • Дифференциальные уравнения |
---|
Использование программы SPICE для моделирования электрических схем |
• Программа моделирования электрических цепей SPICE — Введение • История программы SPICE • Основы программирования в SPICE • Интерфейс командной строки • Компоненты электрических схем • Опции для проведения анализа • Странные особенности программы SPICE • Примеры электрических цепей и списков связей |
---|
Устранение неполадок – теория и практика |
• Вопросы, которые следует задать, прежде чем продолжить • Общие советы по устранению неполадок • Конкретные методы устранения неполадок • Вероятные сбои в проверенных системах • Вероятные сбои в непроверенных системах • Возможные ментальные ловушки |
---|
Схематические обозначения элементов цепи |
• Провода и соединения • Источники питания • Типы резисторов • Типы конденсаторов • Катушки индуктивности • Взаимные катушки индуктивности • Переключатели с ручным управлением • Управляемые процессом переключатели • Переключатели с электрическим приводом (реле) • Соединители • Диоды • Биполярные транзисторы • Переходные транзисторы с полевым эффектом (JFET) • Транзисторы с полевым эффектом с изолированным затвором (IGFET или MOSFET) • Гибридные транзисторы • Тиристоры • Интегральные схемы • Электронные лампы |
---|
Периодическая таблица химических элементов |
• Таблица Менделеева |
---|
Эксперименты |
---|
Введение |
• Электроника как точная наука • Обустраиваем домашнюю лабораторию |
---|
Основные концепции и испытательное оборудование |
• Использование вольтметра • Использование омметра • Очень простая схема • Использование амперметра при измерении силы тока • Закон Ома • Нелинейное сопротивление • Рассеяние мощности • Цепь с переключателем • Эксперимент по электромагнетизму • Эксперимент с электромагнитной индукцией |
---|
Электрические цепи постоянного тока |
• Электрические цепи постоянного тока – Введение • Последовательные источники питания • Параллельные источники питания • Делитель напряжения • Делитель тока • Потенциометр как делитель напряжения • Потенциометр как реостат • Прецизионный потенциометр • Ограничение диапазона реостата • Термоэлектричество • Мультиметр своими руками • Чувствительный детектор напряжения • Потенциометрический вольтметр • 4-проводное измерение сопротивления • Простейший компьютер • Картошка-батарейка • Зарядка и разрядка конденсатора • Индикатор скорости изменения |
---|
Электрические цепи переменного тока |
• Электрические цепи переменного тока – Введение • Трансформатор – блок питания • Сборка трансформатора • Переменный индуктор • Чувствительный аудиодетектор • Обнаружение магнитных полей переменного тока • Обнаружение электрических полей переменного тока • Альтернатор – автомобильный генератор • Асинхронный двигатель • Асинхронный двигатель побольше • Фазовый сдвиг • Погашение звука • Музыкальный синтезатор как генератор сигналов • ПК-осциллограф • Анализ волновых сигналов • Колебательный контур • Сигнальная связь |
---|
Дискретные полупроводниковые схемы |
• Дискретные полупроводниковые схемы – Введение • Коммутирующий диод • Полупериодный выпрямитель • Двухполупериодный мостовой выпрямитель • Двухполупериодный выпрямитель с центральным отводом • Цепь «выпрямитель/фильтр» • Регулятор напряжения • Транзистор как переключатель • Датчик статического электричества • Датчик импульсного света • Повторитель напряжения • Усилитель с общим эмиттером • Многокаскадный усилитель • Как построить схему токового зеркала • JFET – регулятор тока • Дифференциальный усилитель • Простой операционный усилитель • Аудио осциллограф • Ламповый аудио усилитель |
---|
Аналоговые интегральные схемы |
• Аналоговые интегральные схемы – Введение • Компаратор напряжения • Прецизионный повторитель напряжения • Неинвертирующий усилитель • Высокоимпедансный вольтметр • Интегратор • Аудио осциллограф на таймерной схеме 555 • Наклонный генератор на таймерной схеме 555 • ШИМ-контроллер мощности • Аудиоусилитель класса B |
---|
Цифровые интегральные схемы |
• Цифровые интегральные схемы – Введение • Основная функция вентилей • SR-защёлка на основе вентилей «ИЛИ-НЕ» • SR-защёлка на основе вентиля «И-НЕ» с входом разрешения • SR-триггер на основе вентиля «И-НЕ» • Светодиодный секвенсор • Простейший кодовый замок • 3-битный двоичный счётчик • 7-сегментный дисплей |
---|
Таймерные схемы 555 |
• Интегральный таймер 555 • Триггер Шмитта на интегральном таймере 555 • Гистерезисный осциллограф на интегральном таймере 555 • Моностабильный мультивибратор на интегральном таймере 555 • Минимальное количество комплектующих для КМОП-схемы 555 проблескового прибора длительного действия на красных светодиодах • КМОП-схема 555 проблескового прибора длительного действия на синих светодиодах • КМОП-схема 555 проблескового прибора длительного действия на светодиодах обратного хода • КМОП-схема 555 проблескового прибора длительного действия на красных светодиодах |
---|