Перевод: Макаров В. (valemak)
Проверка/Оформление/Редактирование: Мякишев Е.А.
Как построить схему токового зеркала[1]
Оборудование и материалы
Рекомендуются маломощные транзисторы, чтобы иметь возможность испытать «тепловой разгон» в последней части эксперимента. Более крупные «мощные» транзисторы могут не демонстрировать такого же поведения при таких низких уровнях тока. Однако для создания токового зеркала можно использовать любую пару идентичных NPN-транзисторов.
Имейте в виду, что не все транзисторы имеют одинаковые обозначения выводов, даже если они имеют одинаковый внешний вид. Это будет определять, как вы будете соединять транзисторы вместе и с другими компонентами, поэтому обязательно ознакомьтесь со спецификацией (техническим описанием компонента), которые легко получить на веб-сайте производителя.
Имейте в виду, что на упаковке транзистора и даже в техническом паспорте могут быть указаны неправильные схемы идентификации клемм! Настоятельно рекомендуется дважды проверить идентичность контактов с помощью функции проверки диодов вашего мультиметра.
Для получения подробной информации о том, как идентифицировать выводы полевых транзисторов с помощью мультиметра, обратитесь к главе 4 «Биполярные транзисторы» тома «Полупроводники» (том III) этой серии книг.
Ссылки по теме
Цели эксперимента
- Построить схему токового зеркала
- Определить токовые ограничения схемы токового зеркала
- Изучить температурную зависимость BJT
- Испытать контролируемую ситуацию «теплового разгона»
Принципиальная схема
Рис. 1. Схематическая диаграмма: токовое зеркало.
Иллюстрации
Рис. 2. Иллюстрация: токовое зеркало.
Ход эксперимента
Токовое зеркало можно рассматривать как регулируемый регулятор тока, предел тока которого легко устанавливается одним сопротивлением. Это довольно грубая схема регулятора тока, но она находит широкое применение благодаря своей простоте.
В этом эксперименте у вас будет возможность построить одну из таких схем, изучить её свойства регулирования тока, а также воочию убедиться в некоторых её практических ограничениях. Соберите цепь, как показано на схеме и иллюстрации.
В списке нужного оборудования упоминается один дополнительный постоянный резистор 1,5 кОм. Он используется не сразу, а в последней части этого эксперимента.
Потенциометр устанавливает количество тока через транзистор Q1. Этот транзистор работает как простой диод: просто P-N-переход.
Зачем использовать транзистор вместо обычного диода? Потому что важно, чтобы характеристики перехода этих двух транзисторов совпадали при использовании их в схеме токового зеркала. Напряжение, падающее на переход база/эмиттер Q1, подаётся на переход база/эмиттер другого транзистора Q2, заставляя его «включаться» и аналогичным образом проводить ток.
Поскольку напряжение на переходах база/эмиттер двух транзисторов одинаковое (две пары переходов соединены параллельно друг с другом), то и ток должен проходить через их базовые клеммы, предполагая одинаковые характеристики перехода и одинаковую температуру перехода. Согласованные транзисторы также должны иметь одинаковые коэффициенты β, поэтому равные токи базы означают равные токи коллектора.
Практическим результатом всего этого является то, что ток коллектора Q2 имитирует любую величину тока, установленную через коллектор Q1 потенциометром. Другими словами, ток через Q2 отражает ток через Q1. Изменения сопротивления нагрузки (сопротивление, соединяющее коллектор Q2 с положительной стороной батареи) не влияют на ток Q1 и, следовательно, не влияют на напряжение база/эмиттер или ток базы Q2.
При постоянном токе базы и почти постоянном коэффициенте β на транзисторе Q2 будет падать столько или меньше напряжение коллектор/эмиттер, сколько необходимо для поддержания постоянного тока коллектора (нагрузки). Таким образом, схема токового зеркала регулирует ток на уровне, установленном потенциометром, независимо от сопротивления нагрузки.
Ну, во всяком случае, так оно и должно работать. Реальность не так проста, как вы сейчас увидите.
На показанной принципиальной схеме цепь нагрузки Q2 замыкается на положительную сторону батареи через амперметр для облегчения измерения тока. Вместо того, чтобы жёстко подключать чёрный щуп амперметра к определённой точке цепи, я отметил пять контрольных точек, от КТ1 до КТ5, чтобы вы могли прикасаться к ним чёрным щупом при измерении тока.
Это позволяет быстро и без усилий изменять сопротивление нагрузки: прикосновение щупа к КТ1 приводит к практически полному отсутствию сопротивления нагрузки, а прикосновение к КТ5 даёт примерно 14,5 кОм сопротивления нагрузки. Чтобы начать эксперимент, прикоснитесь испытательным щупом к КТ4 и отрегулируйте потенциометр по его диапазону хода.
Вы должны увидеть небольшой изменяющийся ток, указанный вашим амперметром, когда вы перемещаете механизм потенциометра: не более нескольких миллиампер. Оставьте потенциометр установленным в положение, дающее круглое число миллиампер, и переместите чёрный тестовый щуп измерителя в положение КТ3.
Текущая индикация должна быть почти такой же, как и раньше. Переместите датчик на КТ2, затем на КТ1.
Опять же, вы должны увидеть почти неизменную величину тока. Попробуйте установить потенциометр в другое положение, дающее другую индикацию тока, и коснитесь чёрным щупом мультиметра контрольных точек с КТ1 по КТ4, отмечая стабильность показаний тока при изменении сопротивления нагрузки.
Это демонстрирует токорегулирующее поведение этой схемы. Следует отметить, что действующее регулирование не является совершенным.
Несмотря на регулирование тока почти на уровне сопротивления нагрузки от 0 до 4,5 кОм, в этом диапазоне есть некоторые отклонения. Регулирование может быть намного хуже, если сопротивление нагрузки будет слишком высоким.
Попробуйте отрегулировать потенциометр так, чтобы получить максимальный ток, как показано с помощью щупа амперметра, подключённого к КТ1. Оставив потенциометр в этом положении, переместите измерительный щуп на КТ2, затем КТ3, затем КТ4 и, наконец, КТ5, отмечая показания счётчика в каждой точке подключения.
Ток должен регулироваться почти на постоянном уровне до тех пор, пока измерительный щуп не будет перемещён в последнюю контрольную точку, КТ5. Там текущая индикация будет существенно ниже, чем в других контрольных точках.
Почему так? Потому что в цепь Q2 добавлено слишком большое сопротивление нагрузки. Проще говоря, Q2 не может «включаться» больше, чем он уже есть, чтобы поддерживать такое же количество тока при таком большом сопротивлении нагрузки, как и при меньшем сопротивлении нагрузки.
Это явление характерно для всех схем регуляторов тока: существует ограниченное значение сопротивления, с которым регулятор тока может справиться, прежде чем он насытится. Это само собой разумеющееся, так как любая схема регулятора тока, способная подавать постоянный ток через любое вообразимое сопротивление нагрузки, потребует для этого неограниченный источник напряжения!
Закон Ома (E = IR) диктует величину напряжения, необходимого для проталкивания заданного количества тока через заданное сопротивление, и, имея в нашем распоряжении только 12 вольт напряжения питания, конечный предел тока нагрузки и сопротивления нагрузки определённо существует для этой схемы. По этой причине может быть полезно думать о схемах регулятора тока как о схемах ограничения тока, поскольку всё, что они действительно могут сделать, это ограничить ток до некоторого максимального значения.
Важным предостережением для схем токовых зеркал, как правило, является одинаковая температура между двумя транзисторами. «Отражение» тока, происходящее между коллекторными цепями двух транзисторов, зависит от переходов база/эмиттер этих двух транзисторов, имеющих одинаковые свойства.
Как описывает «уравнение диода», соотношение между напряжением и током для P-N-перехода сильно зависит от температуры перехода. Чем горячее P-N-переход, тем больший ток через него проходит при заданном падении напряжения.
Если один транзистор станет более горячим, чем другой, он будет пропускать бо́льший ток коллектора, чем другой, и схема больше не будет «отражать» ток, как от неё ожидается. При построении схемы реального токового зеркала с использованием дискретных транзисторов два транзистора должны быть склеены эпоксидной смолой (встык), чтобы они оставались примерно при одинаковой температуре.
Чтобы проиллюстрировать эту зависимость от одинаковой температуры, попробуйте подержать один транзистор между пальцами, чтобы нагреть его. Что происходит с током через нагрузочные резисторы при повышении температуры транзистора?
Теперь отпустите транзистор и подуйте на него, чтобы он остыл до температуры окружающей среды. Возьмите другой транзистор между пальцами, чтобы нагреть его.
Что сейчас делает ток нагрузки? На следующем этапе эксперимента мы намеренно позволим одному из транзисторов перегреться и отметим последствия.
Чтобы избежать повреждения транзистора, эту процедуру следует проводить не дольше, чем это необходимо для наблюдения за тем, как ток нагрузки начинает «убегать». Для начала отрегулируйте потенциометр на минимальный ток.
Затем замените ограничительный резистор RОгр. 10 кОм на резистор 1,5 кОм. Это позволит более высокому току проходить через Q1, а следовательно, и через Q2.
Поместите чёрный щуп амперметра на КТ1 и наблюдайте за показаниями тока. Перемещайте потенциометр в направлении увеличения тока, пока на амперметре не будет считано около 10 мА.
В этот момент прекратите двигать потенциометр и просто наблюдайте за током. Вы заметите, что ток начнёт увеличиваться сам по себе, без дальнейшего движения потенциометра!
Разомкните цепь, удалив измерительный щуп из КТ1, когда ток превысит 30 мА, чтобы не повредить транзистор Q2. Если осторожно прикоснуться пальцем к обоим транзисторам, то можно заметить, что Q2 тёплый, а Q1 холодный.
Предупреждение
Если ток Q2 «убегал» слишком далеко или в течение слишком долгого времени, он может сильно нагреться! Вы можете получить сильный ожог кончика пальца, прикоснувшись к перегретому полупроводниковому компоненту, поэтому будьте осторожны!
Что только что произошло, что заставило Q2 перегреться и потерять контроль над током? Подключив амперметр к КТ1, все сопротивления нагрузки были удалены, поэтому Q2 должен был сбрасывать полное напряжение батареи между коллектором и эмиттером, поскольку он регулировал ток.
Транзистор Q1, по крайней мере, имел сопротивление 1,5 кОм RОгр., чтобы сбрасывать бо́льшую часть напряжения батареи, поэтому его рассеиваемая мощность была намного меньше, чем у Q2. Этот грубый дисбаланс рассеиваемой мощности привел к тому, что Q2 нагревался больше, чем Q1.
По мере повышения температуры транзистор Q2 пропускает бо́льший ток при той же величине падения напряжения база/эмиттер. Это заставляет его нагреваться ещё быстрее, так как он пропускает бо́льший ток коллектора, но при этом падает полные 12 вольт между коллектором и эмиттером.
Этот эффект известен как тепловой разгон, и он возможен во многих схемах биполярных транзисторов, а не только в токовых зеркалах.
Компьютерное моделирование
Схема с номерами узлов SPICE:
Рис. 3. Схематическая диаграмма для SPICE: токовое зеркало.
Список связей (создайте текстовый файл, содержащий следующий текст, дословно):
Список связей SPICE
Current mirror * Токовое зеркало
v1 1 0
vammeter 1 3 dc 0
rlimit 1 2 10k
rload 3 4 3k
q1 2 2 0 mod1
q2 4 2 0 mod1
.model mod1 npn bf=100
.dc v1 12 12 1
.print dc i(vammeter)
.end
Амперметр – это не что иное, как батарея постоянного тока с нулевым напряжением, расположенная именно для перехвата тока нагрузки. Это не более чем трюк для измерения тока в моделировании SPICE, поскольку в языке SPICE не существует специального компонента «амперметр».
Важно помнить, что SPICE распознаёт только первые восемь символов имени компонента. Имя «vammeter» подходит, но если бы мы включили в схему более одного источника напряжения для измерения тока и назвали бы их «vammeter1» и «vammeter2» соответственно, SPICE счёл бы, что это два экземпляра одного и того же компонента «vammeter» (т.к. видит только первые восемь символов) и остановился бы с ошибкой.
Что следует иметь в виду при изменении списка соединений или программировании собственной симуляции SPICE! Вам придётся поэкспериментировать с различными значениями сопротивления нагрузки R в этом моделировании, чтобы оценить токорегулирующий характер схемы.
При значении RОгр., установленном на 10 кОм, и напряжении питания 12 В регулируемый ток через RНагрузка составит 1,1 мА. SPICE показывает, что стабилизация идеальна (разве виртуальный мир компьютерного моделирования не так прекрасен?), ток нагрузки остаётся на уровне 1,1 мА для широкого диапазона сопротивлений нагрузки. Однако, если сопротивление нагрузки превышает 10 кОм, даже это моделирование показывает, что ток нагрузки уменьшается, как и в реальной жизни.
См.также
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|
Внешние ссылки
Теория по электронике |
---|
Постоянный ток |
---|
Основные концепты электричества |
• Статическое электричество • Проводники, диэлектрики и поток электронов • Что такое электрические цепи? • Напряжение и электроток • Сопротивление • Напряжение и электроток в реальной цепи • Условный ток и поток электронов |
---|
Закон Ома |
• Закон Ома – Как напряжение, сила тока и сопротивление связаны друг с другом • Аналогия для закона Ома • Мощность в электрических цепях • Расчёт электрической мощности • Резисторы • Нелинейная проводимость • Построение цепи • Полярность перепада напряжения • Компьютерная симуляция электрических цепей |
---|
Правила электробезопасности |
• Важность правил электробезопасности • Воздействие электричества на психологическое состояние • Путь, который ток проходит перед ударом • Закон Ома (снова!) • Техника безопасности • Первая медицинская помощь при ударе током • Распространённые источники опасности • Проектирование электроцепей с учётом требований безопасности • Безопасное использование приборов для измерения электрических показателей • Данные о влиянии удара током на тело человека |
---|
Экспоненциальная запись и метрические приставки |
• Экспоненциальная запись • Арифметические операции для экспоненциальной записи • Метрические обозначения • Преобразование метрических приставок • Используем ручной калькулятор • Экспоненциальная форма в программе SPICE |
---|
Последовательные и параллельные электрические цепи |
• Что такое «последовательные» и «параллельные» электрические цепи • Простая последовательная цепь • Простая параллельная цепь • Электропроводность • Рассчитываем мощность • Правильно используем закон Ома • Анализ отказов компонентов цепи • Строим простые резистивные цепи |
---|
Схемы с делителями напряжения и правила Кирхгофа |
• Схемы с делителем напряжения • Правило напряжений Кирхгофа (ПНК) • Цепи – делители тока и формула делителя тока • Правило Кирхгофа для силы тока (ПКТ) |
---|
Комбинированные последовательно-параллельные схемы |
• Что такое последовательно-параллельная цепь • Методы анализа последовательно-параллельных резисторных цепей • Перерисовываем избыточно усложнённые схемы • Анализ отказов компонентов (продолжение) • Построение простых резисторных цепей |
---|
Измерения в электрических цепях постоянного тока |
• Что такое измеритель? • Как устроен вольтметр • Как вольтметр влияет на измеряемую цепь • Как устроен амперметр • Как амперметр влияет на измеряемую цепь • Как устроен омметр • Высоковольтный омметр • Мультиметры • Кельвиновское 4-проводное измерение сопротивления • Мостовые схемы • Как устроен ваттметр • Как самостоятельно сделать ручной калибратор |
---|
Сигналы электрического оборудования |
• Аналоговые и цифровые сигналы • Системы сигналов напряжения • Системы сигналов силы тока • Тахогенераторы • Теромопары • Измерения pH • Тензодатчики |
---|
Анализ сети постоянного тока |
• Что такое сетевой анализ? • Метод токов ветвей • Аналитический метод контурных токов • Метод узловых потенциалов • Введение в сетевые теоремы • Теорема Миллмана • Теорема о суперпозиции • Теорема Тевенена • Теорема Нортона • Эквивалентность схем Тевенена и Нортона • И вновь о теореме Миллмана • Теорема о передаче максимальной мощности • Δ-Y и Y-Δ преобразования |
---|
Батареи и системы питания |
• Поведение электронов при химических реакциях • Батарейные конструкции • Рейтинг батарей • Батареи специального назначения • Практические рекомендации при использовании батарей |
---|
Физика проводников и диэлектриков |
• Введение в физику проводников и диэлектриков • Размеры проводов• Допустимые токовые нагрузки на провода • Предохранители • Удельное сопротивление • Температурный коэффициент сопротивления • Сверхпроводимость • Пробивное напряжение диэлектрика |
---|
Конденсаторы |
• Электрическое поле и ёмкость • Конденсаторы и дифференциальное исчисление • Факторы, влияющие на ёмкость конденсатора • Последовательное и параллельное соединение конденсаторов • Практические соображения - Конденсаторы |
---|
Магнетизм и электромагнетизм |
• Постоянные магниты • Электромангетизм • Единицы измерения магнитных величин • Магнитная проницаемость и насыщение • Электромагнитная индукция • Взаимная индукция |
---|
Катушки индуктивности |
• Магнитные поля и индуктивность • Катушки индуктивности и дифференциальное исчисление • Факторы, влияющие на индуктивность • Катушки индуктивности в последовательных и параллельных соединениях • Практические соображения – Катушки индуктивности |
---|
Постоянные времени в RC и L/R цепях |
• Переходные процессы в электрических цепях • Переходные процессы в цепях с конденсатором • Переходные процессы в цепях с катушкой индуктивности • Расчёт напряжения и силы тока • Почему L/R, а не LR? • Комплексные расчёты напряжения и тока • Сложные схемы • Расчёт неизвестного времени |
---|
Переменный ток |
---|
Основы теории переменного тока |
• Что такое переменный ток? • Формы волн переменного тока • Измерение величин переменного тока • Расчёт простейшей цепи переменного тока • Фаза переменного тока • Принципы радио |
---|
Комплексные числа |
• Введение в комплексные числа • Векторы и волны переменного тока • Сложение простых векторов • Сложение сложных векторов • Полярная и алгебраическая запись комплексных чисел • Арифметика комплексных чисел • И ещё по поводу полярности переменного тока • Несколько примеров с цепями переменного тока |
---|
Реактанс и импеданс – Индуктивность |
• Резистор в цепи переменного тока (Индуктивность) • Катушка индуктивности в цепи переменного тока • Последовательные резистивно-индуктивные цепи • Параллельные резистивно-индуктивные цепи • Особенности катушек индуктивности • Что такое «скин-эффект»? |
---|
Реактанс и импеданс – Ёмкость |
• Резистор в цепи переменного тока (Ёмкость) • Конденсатор в цепи переменного тока • Последовательные резистивно-ёмкостные цепи • Параллельные резистивно-ёмкостные цепи • Особенности конденсаторов |
---|
Реактанс и импеданс – R/L/C-цепи |
• Обзор R, X и Z (сопротивление, реактанс и импеданс) • Последовательные R/L/C-цепи • Параллельные R/L/C-цепи • Последовательно-параллельные R/L/C-цепи • Реактивная проводимость и адмиттанс • R/L/C-цепи – что в итоге? |
---|
Резонанс |
• Электрический маятник • Простой параллельный резонанс (колебательный контур) • Простой последовательный резонанс • Применение резонанса • Резонанс в последовательно-параллельных цепях • Добротность и полоса пропускания резонансной цепи |
---|
Сигналы переменного тока смешанной частоты |
• Сигналы переменного тока смешанной частоты - Введение • Прямоугольные волновые сигналы • Другие волновые формы • Подробнее о спектральном анализе • Эффекты в электрических цепях |
---|
Фильтры |
• Что такое фильтр? • Низкочастотные фильтры • Высокочастотные фильтры • Полосовые фильтры • Полосно-заграждающие фильтры • Резонансные фильтры • Подводя итоги по фильтрам |
---|
Трансформаторы |
• Взаимная индуктивность и основные операции • Повышающие и понижающие трансформаторы • Электрическая изоляция • Фазировка • Конфигурации обмотки • Регулировка напряжения • Специальные трансформаторы и приложения • Практические соображения – Трансформаторы |
---|
Многофазные цепи переменного тока |
• Однофазные системы питания • Трёхфазные системы питания • Чередование фаз • Устройство многофазного двигателя • Трёхфазные Y- и дельта-конфигурации • Трёхфазные цепи с трансформатором • Гармоники в многофазных энергосистемах • Гармонические фазовые последовательности |
---|
Коэффициент мощности |
• Мощность в резистивных и реактивных цепях переменного тока • Истинная, реактивная и полная мощность • Расчёт коэффициента мощности • Практическая коррекция коэффициента мощности |
---|
Измерение цепей переменного тока |
• Вольтметры и амперметры переменного тока • Измерение частоты и фазы • Измерение мощности • Измерение качества электроэнергии • Мостовые схемы переменного тока • Измерительные преобразователи переменного тока |
---|
Двигатели переменного тока |
• Введение в двигатели переменного тока • Синхронные двигатели • Синхронный конденсатор • Двигатель с магнитным сопротивлением • Шаговые двигатели • Бесщёточный двигатель постоянного тока • Многофазные асинхронные двигатели Теслы • Асинхронные двигатели с фазным ротором • Однофазные асинхронные двигатели • Прочие специализированные двигатели • Сельсин-двигатели (синхронизированные двигатели) • Коллекторные двигатели переменного тока |
---|
Линии передачи |
• Кабель на 50 Ом? • Электрические цепи и скорость света • Характеристический импеданс • Линии передачи конечной длины • «Длинные» и «короткие» линии передачи • Стоячие волны и резонанс • Преобразование импеданса • Волноводы |
---|
Полупроводники |
---|
Усилители и активные устройства |
• От электрики к электронике • Активные и пассивные устройства • Усилители • Коэффициент усиления • Децибелы • Абсолютные дБ-шкалы • Аттенюаторы |
---|
Теория твердотельных приборов |
• Введение в теорию твердотельных устройств • Квантовая физика • Валентность и кристаллическая структура • Зонная теория твёрдых тел • Электроны и «дырки» • P-N-переход • Полупроводниковые диоды • Транзисторы с биполярным переходом • Полевые транзисторы • Полевые транзисторы с изолированным затвором (MOSFET) • Тиристоры • Методы производства полупроводников • Сверхпроводящие устройства • Квантовые устройства • Полупроводниковые приборы в SPICE |
---|
Диоды и выпрямители |
• Диоды и выпрямители – Введение • Проверка диодов мультиметром • Номинальные характеристики диодов • Схемы выпрямителей • Пиковый детектор • Схемы ограничителей напряжения • Схемы фиксаторов уровня • Умножители напряжения (удвоители, утроители, учетверители и т.д.) • Схемы коммутации индуктивных нагрузок • Диодные схемы коммутации • Что такое диод Зенера (стабилитрон)? • Диоды специального назначения • Прочие диодные технологии • Модели диодов в SPICE |
---|
Биполярные транзисторы |
• Транзисторы с биполярным переходом (ТБП) – Введение • Транзистор с биполярным переходом (ТБП) как переключатель • Проверка транзистора с биполярным переходом (ТБП) с помощью мультиметра • Активный режим работы транзистора с биполярным переходом (ТБП) • Усилительный каскад с общим эмиттером • Усилительный каскад с общим коллектором • Усилительный каскад с общей базой • Каскодный усилитель • Методы смещения для транзисторов с биполярным переходом (ТБП) • Расчёт смещения для транзисторов с биполярным переходом (ТБП) • Взаимодействие входа и выхода в транзисторах с биполярным переходом (ТБП) • Обратная связь в транзисторах с биполярным переходом (ТБП) • Импеданс усилителя • Токовые зеркала в транзисторах с биполярным переходом (ТБП) • Параметры и корпуса транзисторов с биполярным переходом (ТБП) • Особенности транзисторов с биполярным переходом (ТБП) |
---|
Полевые транзисторы |
• Полевые транзисторы (JFET) – Введение • Полевой транзистор (JFET) как переключатель • Проверка полевого транзистора (JFET) с помощью мультиметра • Активный режим работы полевого транзистора (JFET) |
---|
Полевые транзисторы с изолированным затвором |
• Полевые транзисторы с изолированным затвором – Введение • Обедняющие полевые транзисторы с изолированным затвором • Биполярные транзисторы с изолированным затвором |
---|
Тиристоры |
• Гистерезис • Газоразрядные лампы • Диод Шокли (динистор) • DIAC (симметричный динистор) • Управляемый кремниевый выпрямитель (SCR-тиристор) • TRIAC (симметричный тринистор, триак) • Оптотиристоры • Однопереходной транзистор • Управляемый кремниевый коммутатор (SCS-тиристор) • Тиристоры с полевым управлением |
---|
Операционные усилители |
• Операционные усилители (ОУ) – Введение • Несимметричные и дифференциальные усилители • «Операционный» усилитель • Отрицательная обратная связь • Делитель напряжения в цепи обратной связи • Аналогия для делителя напряжения в цепи обратной связи • Преобразование сигнала напряжения в сигнал тока • Схемы усреднителя и сумматора • Построение дифференциальных усилителей • Инструментальный (измерительный) усилитель • Схемы дифференциатора и интегратора • Положительная обратная связь • Практические аспекты ОУ • Модели операционных усилителей |
---|
Практические аналоговые полупроводниковые схемы |
• Электростатический разряд • Схемы источников питания • Схемы усилителей • Осцилляторные схемы • Радиосхемы • Вычислительные схемы • Измерительные схемы |
---|
Приводы двигателей постоянного тока |
• Широтно-импульсная модуляция |
---|
Электронные лампы |
• Электронные лампы – Введение • История электронных ламп – с чего всё началось • Триод • Тетрод • Силовой лучевой тетрод • Пентод • Комбинированные электронные лампы • Характеристики электронных ламп • Ионизированные (газовые) электронные лампы • Индикаторные электронные лампы • Микроволновые электронные лампы • Сравниваем электронные лампы и полупроводники |
---|
Цифровая электроника |
---|
Системы счисления |
• Числа и способы их выражения • Системы счисления • Сравниваем десятеричные и двоичные числа • Восьмеричная и шестнадцатеричная системы счисления • Восьмеричные и шестнадцатеричные числа преобразовываем в десятеричные • Преобразование из десятеричной системы счисления |
---|
Двоичная арифметика |
• Числа и системы счисления • Двоичное сложение • Отрицательные двоичные числа • Двоичное вычитание • Двоичное переполнение • Наборы битов |
---|
Логические вентили |
• Цифровые сигналы и вентили • Вентили «НЕ» • «Буферные» вентили • Вентили с более чем одним входом • Транзисторно-транзисторная логика вентилей «И-НЕ» и «И» • Транзисторно-транзисторная логика вентилей «ИЛИ-НЕ» и «ИЛИ» • Схемы КМОП-вентилей • Специальные выходы в вентилях • Универсальность вентилей «И-НЕ» и «ИЛИ-НЕ» • Уровни напряжения для «высоких» и «низких» логических сигналов • Вентильные DIP корпусы |
---|
Переключатели |
• Типы переключателей • Как устроены контакты переключателей • «Нормальное» состояние контакта и последовательное замыкание/размыкание • «Дребезжание» контактов |
---|
Электромеханические реле |
• Устройство реле • Контакторы • Реле с задержкой времени • Защитные реле • Твердотельные реле |
---|
Релейная логика |
• «Лестничные» диаграммы • Функции цифровой логики • Разрешающие и блокирующие схемы • Схемы управления двигателем • Отказоустойчивость • Программируемые логические контроллеры (ПЛК) |
---|
Булева алгебра |
• Булева алгебра – Введение • Логическая арифметика • Булевы алгебраические тождества • Булевы алгебраические свойства • Логические правила для упрощения • Примеры упрощения схем • Функция «Исключающее ИЛИ»: вентиль XOR • Законы де Моргана • Преобразование таблиц истинности в логические выражения |
---|
Карты Карно |
• Карты Карно – Введение • Диаграммы Венна и множества • Булевы соотношения на диаграммах Венна • Преобразование диаграмм Венна в карты Карно • Карты Карно, таблицы истинности и логические выражения • Упрощение логики с помощью карт Карно • Бо́льшие карты Карно с 4-мя переменными • Минтермы и макстермы в реализациях • Обозначения сумм и произведений • Поля «безразличия» на картах Карно • Бо́льшие карты Карно с 5-ю и 6-ю переменными |
---|
Функции комбинационной логики |
• Функции комбинационной логики – Введение • Неполный сумматор • Полный сумматор • Декодер • Кодер • Демультиплексоры • Мультиплексоры • Совместное использование множественных комбинационных схем |
---|
Мультивибраторы |
• Цифровая логика с обратной связью • SR-защёлка • Вентильная SR-защёлка • D-защёлка • Защёлки с запуском по фронту сигнала: триггеры • JK-триггер • Триггеры с асинхронными входами • Моностабильные мультивибраторы |
---|
Схемы последовательностей |
• Двоичная счётная последовательность • Асинхронные счётчики • Синхронные счётчики • Конечные автоматы |
---|
Сдвиговые регистры |
• Сдвиговые регистры – Введение • Сдвиговые регистры: последовательный вход, последовательный выход (SISO) • Сдвиговые регистры: параллельный вход, последовательный выход (PISO) • Сдвиговые регистры: последовательный вход, параллельный выход (SIPO) • Универсальные сдвиговые регистры: параллельный вход, параллельный выход (PIPO) • Кольцевые счётчики |
---|
Цифро-аналоговые и аналого-цифровые преобразования |
• Цифро-аналоговые (ЦАП) и аналого-цифровые (АЦП) преобразования – Введение • ЦАП R/2nR: цифро-аналоговый преобразователь с двоично-взвешенным входом • ЦАП R/2R: (цифро-аналоговый преобразователь) • Параллельные АЦП • Цифровые ступенчатые АЦП • АЦП с последовательным приближением • Отслеживающий АЦП • Скатные (интегрирующие) АЦП • Дельта-сигма АЦП • Практические аспекты схем АЦП |
---|
Цифровая связь |
• Цифровая связь – Введение • Сети и шины • Потоки данных • Типы электрических сигналов • Оптическая передача данных • Топология сети • Сетевые протоколы • Практические аспекты цифровой связи |
---|
Цифровое хранилище (память) |
• Почему «цифровое»? • Понятия и концепции цифровой памяти • Современная немеханическая память • Устаревшие немеханические технологии памяти • Постоянное запоминающее устройство (ПЗУ) • Память с движущимися частями: «Приводы» |
---|
Принципы цифровых вычислений |
• Двоичный сумматор • Таблицы поиска • Конечные автоматы • Микропроцессоры • Микропроцессорное программирование |
---|
Справочные материалы |
---|
Полезные уравнения и коэффициенты пересчёта |
• Уравнения и законы для цепей постоянного тока • Правила последовательных цепей • Правила параллельных цепей • Эквивалентные значения компонентов в последовательных и параллельных цепях • Уравнение ёмкости конденсатора • Уравнение катушки индуктивности • Уравнения постоянной времени • Уравнения цепей переменного тока • Уравнения для децибел • Метрические приставки и преобразования единиц измерения |
---|
Цветовая маркировка |
• Цветовая маркировка резисторов • Цветовая маркировка проводки • Инфографика цветовой маркировки проводки |
---|
Таблицы проводников и диэлектриков |
• Таблица калибров медной проволоки • Таблица допустимых нагрузок для медного провода • Коэффициенты удельного сопротивления • Таблица температурных коэффициентов сопротивления • Критические температуры для сверхпроводников • Диэлектрическая прочность изоляторов |
---|
Справочник по алгебре |
• Основные алгебраические тождества • Основные свойства арифметики • Свойства степеней • Извлечение корней • Важные константы • Логарифмы • Формулы сокращённого умножения • Квадратное уравнение • Прогрессии • Факториалы • Решение систем уравнений: метод подстановки и метод сложения |
---|
Справочник по тригонометрии |
• Тригонометрия прямоугольного треугольника • Тригонометрия произвольного треугольника • Тригонометрические формулы • Гиперболические функции |
---|
Справочник по исчислению |
• Формулы вычисления пределов • Производная числа • Общие производные • Производные показательных функций с основанием e • Производные простых тригонометрических функций • Правила вычисления производных • Первообразная (неопределённый интеграл) • Общие первообразные • Первообразные показательных функций от числа e • Правила вычисления первообразных • Определённые интегралы и основная теорема исчисления • Дифференциальные уравнения |
---|
Использование программы SPICE для моделирования электрических схем |
• Программа моделирования электрических цепей SPICE — Введение • История программы SPICE • Основы программирования в SPICE • Интерфейс командной строки • Компоненты электрических схем • Опции для проведения анализа • Странные особенности программы SPICE • Примеры электрических цепей и списков связей |
---|
Устранение неполадок – теория и практика |
• Вопросы, которые следует задать, прежде чем продолжить • Общие советы по устранению неполадок • Конкретные методы устранения неполадок • Вероятные сбои в проверенных системах • Вероятные сбои в непроверенных системах • Возможные ментальные ловушки |
---|
Схематические обозначения элементов цепи |
• Провода и соединения • Источники питания • Типы резисторов • Типы конденсаторов • Катушки индуктивности • Взаимные катушки индуктивности • Переключатели с ручным управлением • Управляемые процессом переключатели • Переключатели с электрическим приводом (реле) • Соединители • Диоды • Биполярные транзисторы • Переходные транзисторы с полевым эффектом (JFET) • Транзисторы с полевым эффектом с изолированным затвором (IGFET или MOSFET) • Гибридные транзисторы • Тиристоры • Интегральные схемы • Электронные лампы |
---|
Периодическая таблица химических элементов |
• Таблица Менделеева |
---|
Эксперименты |
---|
Введение |
• Электроника как точная наука • Обустраиваем домашнюю лабораторию |
---|
Основные концепции и испытательное оборудование |
• Использование вольтметра • Использование омметра • Очень простая схема • Использование амперметра при измерении силы тока • Закон Ома • Нелинейное сопротивление • Рассеяние мощности • Цепь с переключателем • Эксперимент по электромагнетизму • Эксперимент с электромагнитной индукцией |
---|
Электрические цепи постоянного тока |
• Электрические цепи постоянного тока – Введение • Последовательные источники питания • Параллельные источники питания • Делитель напряжения • Делитель тока • Потенциометр как делитель напряжения • Потенциометр как реостат • Прецизионный потенциометр • Ограничение диапазона реостата • Термоэлектричество • Мультиметр своими руками • Чувствительный детектор напряжения • Потенциометрический вольтметр • 4-проводное измерение сопротивления • Простейший компьютер • Картошка-батарейка • Зарядка и разрядка конденсатора • Индикатор скорости изменения |
---|
Электрические цепи переменного тока |
• Электрические цепи переменного тока – Введение • Трансформатор – блок питания • Сборка трансформатора • Переменный индуктор • Чувствительный аудиодетектор • Обнаружение магнитных полей переменного тока • Обнаружение электрических полей переменного тока • Альтернатор – автомобильный генератор • Асинхронный двигатель • Асинхронный двигатель побольше • Фазовый сдвиг • Погашение звука • Музыкальный синтезатор как генератор сигналов • ПК-осциллограф • Анализ волновых сигналов • Колебательный контур • Сигнальная связь |
---|
Дискретные полупроводниковые схемы |
• Дискретные полупроводниковые схемы – Введение • Коммутирующий диод • Полупериодный выпрямитель • Двухполупериодный мостовой выпрямитель • Двухполупериодный выпрямитель с центральным отводом • Цепь «выпрямитель/фильтр» • Регулятор напряжения • Транзистор как переключатель • Датчик статического электричества • Датчик импульсного света • Повторитель напряжения • Усилитель с общим эмиттером • Многокаскадный усилитель • Как построить схему токового зеркала • JFET – регулятор тока • Дифференциальный усилитель • Простой операционный усилитель • Аудио осциллограф • Ламповый аудио усилитель |
---|
Аналоговые интегральные схемы |
• Аналоговые интегральные схемы – Введение • Компаратор напряжения • Прецизионный повторитель напряжения • Неинвертирующий усилитель • Высокоимпедансный вольтметр • Интегратор • Аудио осциллограф на таймерной схеме 555 • Наклонный генератор на таймерной схеме 555 • ШИМ-контроллер мощности • Аудиоусилитель класса B |
---|
Цифровые интегральные схемы |
• Цифровые интегральные схемы – Введение • Основная функция вентилей • SR-защёлка на основе вентилей «ИЛИ-НЕ» • SR-защёлка на основе вентиля «И-НЕ» с входом разрешения • SR-триггер на основе вентиля «И-НЕ» • Светодиодный секвенсор • Простейший кодовый замок • 3-битный двоичный счётчик • 7-сегментный дисплей |
---|
Таймерные схемы 555 |
• Интегральный таймер 555 • Триггер Шмитта на интегральном таймере 555 • Гистерезисный осциллограф на интегральном таймере 555 • Моностабильный мультивибратор на интегральном таймере 555 • Минимальное количество комплектующих для КМОП-схемы 555 проблескового прибора длительного действия на красных светодиодах • КМОП-схема 555 проблескового прибора длительного действия на синих светодиодах • КМОП-схема 555 проблескового прибора длительного действия на светодиодах обратного хода • КМОП-схема 555 проблескового прибора длительного действия на красных светодиодах |
---|